Citation: Kexin Dong,  Chuqi Shen,  Ruyu Yan,  Yanping Liu,  Chunqiang Zhuang,  Shijie Li. Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation[J]. Acta Physico-Chimica Sinica, ;2024, 40(10): 231001. doi: 10.3866/PKU.WHXB202310013 shu

Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation

  • Corresponding author: Shijie Li, lishijie@zjou.edu.cn
  • Received Date: 16 October 2023
    Revised Date: 15 November 2023
    Accepted Date: 15 November 2023

    Fund Project: This work was supported by the National Natural Science Foundation of China (U1809214), Natural Science Foundation of Zhejiang Province of China (LY20E080014, LTGN23E080001), and Science and Technology Project of Zhoushan of China (2022C41011).

  • The escalating presence of pharmaceutical antibiotics in natural water poses an overwhelming threat to the sustainable development of society. Photocatalysis technology stands out as a promising and cutting-edge environmental purification alternative. C3N5, identified as a distinctive nonprecious nonmetal photocatalyst, holds potential for environmental protection. However, challenges persist originating from the sluggish photoreaction kinetics and severe photo-carrier reunion. Currently, the design of a special S-scheme photosystem proves to be a reliable strategy for obtaining outstanding photocatalysts. In this context, a plasmonic S-scheme photosystem involving Ag/Ag3PO4/C3N5 was developed through a feasible route. The compactly connected 0D/0D/2D Ag/Ag3PO4/C3N5 heterostructure, benefitting from the synergy between the plasmonic effect and the S-scheme junction, facilitates the efficient utilization of appreciably reinforced sunlight absorption, effective photo-carrier disassociation, and notable photoredox capacity. Consequently, this system generates ·OH and ·O2- effectively. Ag/Ag3PO4/C3N5 demonstrates a superb photocatalytic levofloxacin eradication rate of 0.0362 min-1, marking a substantial advancement of 24.8, 1.1, and 0.7 folds compared to C3N5, Ag3PO4, and Ag3PO4/C3N5, respectively. Impressively, Ag/Ag3PO4/C3N5 delivers remarkable anti-interference performance and reusability. This achievement signifies a significant step toward developing potent C3N5-involved photosystems for environmental purification.
  • 加载中
    1. [1]

      (1) Li, X.; He, F.; Wang, Z.; Xing, B. Eco-Environ. Health 2022, 1, 181. doi: 10.1016/j.eehl.2022.10.001

    2. [2]

      (2) Xu, H.; Jia, Y.; Sun, Z.; Su, J.; Liu, Q. S.; Zhou, Q.; Jiang, G. Eco-Environ. Health 2022, 1, 31. doi: 10.1016/j.eehl.2022.04.003

    3. [3]

      (3) Previšić, A.; Vilenica, M.; Vučković, N.; Petrović, M.; Rožman, M. Environ. Sci. Technol. 2021,55, 3736. doi: 10.1021/acs.est.0c07609

    4. [4]

      (4) Santos, A. J. D.; Barazorda-Ccahuana, H. L.; Caballero-Manrique, G.; Chérémond, Y.; Espinoza-Montero, P. J.; González-Rodríguez, J. R.; Jáuregui-Haza, U. J.; Lanza, M. R. V.; Nájera, A.; Oporto, C.; et al. Nat. Sustain. 2023,6, 349. doi: 10.1038/s41893-022-01042-z

    5. [5]

      (5) Jeon, I.; Ryberg, E. C.; Alvarez, P. J. J.; Kim, J.-H. Nat. Sustain. 2022, 5, 801. doi: 10.1038/s41893-022-00915-7

    6. [6]

      (6) Narayanan, M.; El-sheekh, M.; Ma, Y.; Pugazhendhi, A.; Natarajan, D.; Kandasamy, G.; Raja, R.; Kumar, R. M. S.; Kumarasamy, S.; Sathiyan, G.; et al. Environ. Pollut. 2022,300, 118922. doi: 10.1016/j.envpol.2022.118922

    7. [7]

      (7) Liu, Y.; Wang, K.; Zhou, Z.; Wei, X.; Xia, S.; Wang, X.-M.; Xie, Y. F.; Huang, X. Environ. Sci. Technol.2022, 56, 15220. doi: 10.1021/acs.est.2c06579

    8. [8]

      (8) Caban, M.; Stepnowski, P. Environ. Chem. Lett. 2021, 19, 3115. doi: 10.1007/s10311-021-01194-y

    9. [9]

      (9) Xu, C.; Anusuyadevi, P. R.; Aymonier, C.; Luque, R.; Marre, S. Chem. Soc. Rev. 2019, 48, 3868. doi: 10.1039/c9cs00102f

    10. [10]

      (10) Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Chem. Soc. Rev. 2022, 51, 3561. doi: 10.1039/D1CS01182K

    11. [11]

      (11) Kumar, A.; Choudhary, P.; Kumar, A.; Camargo, P. H.; Krishnan, V. Small 2021, 18, 2101638. doi: 10.1002/smll.202101638

    12. [12]

      (12) Liras, M.; Barawi, M.; de la O’Shea Peña, V. A. Chem. Soc. Rev. 2019, 48, 5454. doi: 10.1039/c9cs00377k

    13. [13]

      (13) Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Nature Energy 2022, 7, 13. doi: 10.1038/s41560-021-00919-1

    14. [14]

      (14) Wang, Q.; Fang, Z.; Zhang, W.; Zhang, D. Adv. Fiber Mater. 2022, 4, 342. doi: 10.1007/s42765-021-00122-7

    15. [15]

      (15) Gong, H.; Wang, L.; Zhou, K.; Zhang, D.; Zhang, Y.; Adamaki, V.; Bowen, C.; Sergejevs, A. Adv. Powder Mater. 2022, 1, 100025. doi: 10.1016/j.apmate.2021.11.011

    16. [16]

      (16) Shang, W.; Liu, W.; Cai, X.; Hu, J.; Guo, J.; Xin, C.; Li, Y.; Zhang, N.; Wang, N.; Hao, C.; et al. Adv. Powder Mater. 2023, 2, 100094. doi: 10.1016/j.apmate.2022.100094

    17. [17]

    18. [18]

      (18) Zhang, Y.; Xu, J.; Zhou, J.; Wang, L. Chin. J. Catal. 2022, 43, 971. doi: 10.1016/S1872-2067(21)63934-7

    19. [19]

      (19) Liu, Z.; Tian, J.; Yu, C.; Fan, Q.; Liu, X. Chin. J. Catal. 2022, 43, 472. doi: 10.1016/S1872-2067(21)63876-7

    20. [20]

      (20) Chen, R.; Chen, J.; Che, H.; Zhou, G.; Ao, Y.; Liu, B. Chin. J. Struct. Chem. 2022, 41, 2201014. doi: 10.14102/j.cnki.0254-5861.2021-0027

    21. [21]

      (21) Jiao, L.; Jiang, H.-L. Chin. J. Catal. 2023, 45, 1. doi: 10.1016/S1872-2067(22)64193-7

    22. [22]

      (22) Zhou, P.; Luo, M.; Guo, S. Nat. Rev. Chem. 2022, 6, 823. doi: 10.1038/s41570-022-00434-1

    23. [23]

      (23) Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Adv. Fiber Mater. 2022, 4, 1620. doi: 10.1007/s42765-022-00189-w

    24. [24]

      (24) Xiao, W.; Yu, H.; Xu, C.; Pu, Z.; Cheng, X.; Yu, F.; Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2024, 180, 193. doi: 10.1016/j.jmst.2023.08.021

    25. [25]

      (25) Xing, Y.; Liu, S. Chin. J. Struct. Chem. 2022, 41, 2209056. doi: 10.14102/j.cnki.0254-5861.2022-0188

    26. [26]

      (26) Selvaraj, V.; Ong, W.-J.; Pandikumar, A. Coordin. Chem. Rev. 2022, 464, 214541. doi: 10.1016/j.ccr.2022.214541

    27. [27]

      (27) Gibson, E. A. Nat. Catal.2021, 4, 740. doi: 10.1038/s41929-021-00678-y

    28. [28]

      (28) Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 139, 167. doi: 10.1016/j.jmst.2022.08.030

    29. [29]

      (29) Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Chem. Rev. 2022, 122, 10484. doi: 10.1021/acs.chemrev.1c00473

    30. [30]

      (30) Zhang, Y.; Zhang, L.; Zeng, D.; Wang, W.; Wang, J.; Wang, W.; Wang, W. Chin. J. Catal. 2022, 43, 2690. doi: 10.1016/S1872-2067(22)64114-7

    31. [31]

      (31) Sharifi, T.; Crmaric, D.; Kovacic, M.; Popovic, M.; Rokovic, M. K.; Kusic, H.; Jozić, D.; Ambrožić, G.; Kralj, D.; Kontrec, J.; et al. J. Environ. Chem. Eng. 2021, 9, 106025. doi: 10.1016/j.jece.2021.106025

    32. [32]

      (32) Chen, Z.; Wei, W.; Chen, H.; Ni, B.-J. Eco-Environ. Health 2022, 1, 86. doi: 10.1016/j.eehl.2022.05.001

    33. [33]

      (33) Zhai, H.; Liu, Z.; Xu, L.; Liu, T.; Fan, Y.; Jin, L.; Dong, R.; Yi, Y.; Li, Y. Adv. Fiber Mater. 2022,4, 1595. doi: 10.1007/s42765-022-00192-1

    34. [34]

      (34) Liu, C.; Zhang, Y.; Wu, J.; Dai, H.; Ma, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2022, 114, 81. doi: 10.1016/j.jmst.2021.12.003

    35. [35]

      (35) Ng, S.-F.; Chen, X.; Foo, J. J.; Xiong, M.; Ong, W.-J. Chin. J. Catal. 2023, 47, 150. doi: 10.1016/S1872-2067(23)64417-1

    36. [36]

      (36) Li, Z.; Zhou, Y.; Zhou, Y.; Wang, K.; Yun, Y.; Chen, S.; Jiao, W.; Chen, L.; Zou, B.; Zhu, M. Nat. Comm.2023, 14, 5742. doi: 10.1038/s41467-023-41522-0

    37. [37]

      (37) Chellapandi, T.; Madhumitha, G.; Roopan, S. M.; Manjupriya, R.; Arunachalapandi, M.; Pouthika, K.; Elamathi, M. Sep. Purif. Technol. 2023, 307, 122865. doi: 10.1016/j.seppur.2022.122865

    38. [38]

      (38) Peng, C.; Han, L.; Huang, J.; Wang, S.; Zhang, X.; Chen, H. Chin. J. Catal. 2022, 43, 410. doi: 10.1016/S1872-2067(21)63813-5

    39. [39]

      (39) Debnath, B.; Singh, S.; Hossain, S. M.; Krishnamurthy, S.; Polshettiwar, V.; Ogal, S. Langmuir 2022,38, 3139. doi: 10.1021/acs.langmuir.1c03127

    40. [40]

      (40) Sathish, C.; Premkumar, S.; Chu, X.; Yu, X.; Breese, M. B. H.; Al-Abri, M.; Al-Muhtaseb, A. a. H.; Karakoti, A.; Yi, J.; Vinu, A. Angew. Chem. Int. Ed. 2021, 133, 21412. doi: 10.1002/ange.202108605

    41. [41]

      (41) Zhou, D.; Luo, H.; Zhang, F.; Wu, J.; Yang, J.; Wang, H. Adv. Fiber Mater. 2022, 4, 1094. doi: 10.1007/s42765-022-00149-4

    42. [42]

      (42) Zhang, J.; Wang, X.; Shen, K.; Lu, W.; Wang, J.; Chen, F. Adv. Fiber Mater. 2023, 5, 168. doi: 10.1007/s42765-022-00205-z

    43. [43]

      (43) Debnath, B.; Hossain, S. M.; Sadhu, A.; Singh, S.; Polshettiwar, V.; Ogale, S. ACS Appl. Mater. Interfaces 2022, 14, 37076. doi: 10.1021/acsami.2c03758

    44. [44]

      (44) Li, J.; Wang, Y.; Wang, Y.; Guo, Y.; Zhang, S.; Song, H.; Li, X.; Gao, Q.; Shang, W.; Hu, S.; et al. Nano Mater. Sci. 2023, 5, 237. doi: 10.1016/j.nanoms.2023.02.003

    45. [45]

      (45) Vadivel, S.; Fujii, M.; Rajendran, S. Chemosphere 2022, 307, 135716. doi: 10.1016/j.chemosphere.2022.135716

    46. [46]

      (46) Wu, B.; Sun, T.; Liu, N.; Lu, L.; Zhang, R.; Shi, W.; Cheng, P. ACS Appl. Mater. Interfaces 2022,14, 26742. doi: 10.1021/acsami.2c04729

    47. [47]

      (47) Bai, S.; Qiu, H.; Song, M.; He, G.; Wang, F.; Liu, Y.; Guo, L. eScience 2022, 2, 428. doi: 10.1016/j.esci.2022.06.006

    48. [48]

      (48) Sun, X.; Li, L.; Jin, S.; Shao, W.; Wang, H.; Zhang, X.; Xie, Y. eScience 2023, 3, 100095. doi: 10.1016/j.esci.2023.100095

    49. [49]

      (49) Jia, X.; Shen, Z.; Han, Q.; Bi, H. Chin. J. Catal. 2022, 43, 288. doi: 10.1016/S1872-2067(20)63768-8

    50. [50]

      (50) Xia, P.; Pan, X.; Jiang, S.; Yu, J.; He, B.; Ismail, P. M.; Bai, W.; Yang, J.; Yang, L.; Zhang, H.; et al.Adv. Mater. 2022, 34, 2200563. doi: 10.1002/adma.202200563

    51. [51]

      (51) Liu, C.; Xiao, W.; Liu, X.; Wang, Q.; Hu, J.; Zhang, S.; Xu, J.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 161, 123. doi: 10.1016/j.jmst.2023.04.007

    52. [52]

      (52) Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/S1872-2067(23)64444-4

    53. [53]

      (53) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 202300643. doi: 10.1002/adma.202300643

    54. [54]

      (54) Zhao, Y.; Qin, X.; Zhao, X.; Wang, X.; Tan, H.; Sun, H.; Yan, G.; Li, H.; Ho, W.; Lee, S.-C. Chin. J. Catal. 2022, 43, 771. doi: 10.1016/S1872-2067(21)63843-3

    55. [55]

      (55) Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Chin. J. Struct. Chem. 2022, 41, 2201034. doi: 10.14102/j.cnki.0254-5861.2021-0046

    56. [56]

      (56) Han, S.; Li, B.; Huang, L.; Xi, H.; Ding, Z.; Long, J. Chin. J. Struct. Chem. 2022, 41, 2201007. doi: 10.14102/j.cnki.0254-5861.2021-0026

    57. [57]

      (57) Saravanakumar, K.; Maheskumar, V.; Yea, Y.; Yoon, Y.; Muthuraj, V.; Park, C. M. Compos. Part B: Eng. 2022,234, 109726. doi: 10.1016/j.compositesb.2022.109726

    58. [58]

    59. [59]

    60. [60]

      (60) Qaraah, F. A.; Mahyoub, S. A.; Hezam, A.; Qaraah, A.; Drmosh, Q. A.; Xiu, G. Chin. J. Catal. 2022,43, 2637. doi: 10.1016/S1872-2067(21)64038-X

    61. [61]

      (61) Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J. B.; Yu, J. Chin. J. Struct. Chem. 2022, 41, 2206003. doi: 10.14102/j.cnki.0254-5861.2022-0150

    62. [62]

      (62) Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. Chin. J. Catal. 2023, 51, 101. doi: 10.1016/S1872-2067(23)64479-1

    63. [63]

    64. [64]

      (64) Zhao, Z.; Bian, J.; Zhao, L.; Wu, H.; Xu, S.; Sun, L.; Li, Z.; Zhang, Z.; Jing, L. Chin. J. Catal. 2022, 43, 1331. doi: 10.1016/S1872-2067(21)64005-6

    65. [65]

      (65) Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008

    66. [66]

      (66) Cai, M.; Liu, Y.; Dong, K.; Chen, X.; Li, S. Chin. J. Catal. 2023, 52, 239. doi: 10.1016/S1872-2067(23)64496-1

    67. [67]

      (67) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1

    68. [68]

      (68) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470

    69. [69]

    70. [70]

    71. [71]

      (71) Li, S.; Cai, M.; Liu, Y.; Wang, C.; Yan, R.; Chen, X. Adv. Powder Mater. 2023, 2, 100073. doi: 10.1016/j.apmate.2022.100073

    72. [72]

      (72) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/ange.202218688

    73. [73]

      (73) Sun, L.; Li, L.; Fan, J.; Xu, Q.; Ma, D. J. Mater. Sci. Technol. 2022, 123, 41. doi: 10.1016/j.jmst.2021.12.065

    74. [74]

      (74) Li, S.; Dong, K.; Cai, M.; Li, X.; Chen, X. eScience 2024, 4, 100208. doi: 10.1016/j.esci.2023.100208

    75. [75]

      (75) He, S.; Zhai, C.; Fujitsuka, M.; Kim, S.; Zhu, M.; Yin, R.; Zeng, L.; Majima, T. Appl. Catal. B 2021,281, 119479. doi: 10.1016/j.apcatb.2020.119479

    76. [76]

      (76) Grilla, E.; Petala, A.; Frontistis, Z.; Konstantinou, I. K.; Kondarides, D. I.; Mantzavinos, D. Appl. Catal. B 2018, 231, 73. doi: 10.1016/j.apcatb.2018.03.011

    77. [77]

      (77) Cai, T.; Zeng, W.; Liu, Y.; Wang, L.; Dong, W.; Chen, H.; Xia, X. Appl. Catal. B 2020, 263, 118327. doi: 10.1016/j.apcatb.2019.118327

    78. [78]

      (78) Zhu, Y.; Zhuang, Y.; Wang, L.; Tang, H.; Meng, X.; She, X. Chin. J. Catal. 2022, 43, 2558. doi: 10.1016/S1872-2067(22)64099-3

    79. [79]

      (79) Wang, Y.; Han, D.; Wang, Z.; Gu, F. ACS Appl. Mater. Interfaces 2023, 15, 22085. doi: 10.1021/acsami.3c01255

    80. [80]

      (80) van Turnhout, L.; Hattori, Y.; Meng, J.; Zheng, K.; Sá, J. Nano Lett. 2020, 20, 8220. doi: 10.1021/acs.nanolett.0c03344

    81. [81]

      (81) Temerov, F.; Pham, K.; Juuti, P.; Mäkelä, J.; Grachova, E. V.; Kumar, S.; Eslava, S.; Saarinen, J. J. ACS Appl. Mater. Interfaces 2020, 12, 41200. doi: 10.1021/acsami.0c08624

    82. [82]

      (82) Koya, A. N.; Zhu, X.; Ohannesian, N.; Yanik, A. A.; Alabastri, A.; Proietti Zaccaria, R.; Krahne, R.; Shih, W.-C.; Garoli, D. ACS Nano 2021, 15, 6038. doi: 10.1021/acsnano.0c10945

    83. [83]

      (83) Nayak, S.; Parida, K. M. ACS Omega 2018, 3, 7324. doi: 10.1021/acsomega.8b00847

    84. [84]

      (84) Guo, M.; Xing, Z.; Zhao, T.; Qiu, Y.; Tao, B.; Li, Z.; Zhou, W. Appl. Catal. B 2020, 272, 118978. doi: 10.1016/j.apcatb.2020.118978

    85. [85]

      (85) Dong, T.; Wang, P.; Yang, P. Int. J. Hydrog. Energy 2018, 43, 20607. doi: 10.1016/j.ijhydene.2018.09.079

    86. [86]

      (86) Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108

    87. [87]

      (87) Liang, Z.; Xue, Y.; Wang, X.; Zhang, X.; Tian, J.; Cui, H. Nano Mater. Sci. 2023, 5, 202. doi: 10.1016/j.nanoms.2022.03.001

    88. [88]

    89. [89]

      (89) Li, S.; Cai, M.; Wang, C.; Liu, Y. Adv. Fiber Mater. 2023, 5, 994. doi: 10.1007/s42765-022-00253-5

    90. [90]

      (90) Liu, D.; Xue, C. Adv. Mater.2021, 33, 2005738. doi: 10.1002/adma.202005738

    91. [91]

    92. [92]

      (92) Muñoz-Batista, M. J.; Ballari, M. M.; Kubacka, A.; Alfano, O. M.; Fernández-García, M. Chem. Soc. Rev. 2019,48, 637. doi: 10.1039/C8CS00108A

    93. [93]

      (93) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668

    94. [94]

      (94) Zhang, H.; Gu, H.; Wang, X.; Chang, S.; Li, Q.; Dai, W.-L. Chem. Eng. J. 2023, 457, 141185. doi: 10.1016/j.cej.2022.141185

    95. [95]

      (95) Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054

  • 加载中
    1. [1]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    2. [2]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    4. [4]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    5. [5]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    6. [6]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    7. [7]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    8. [8]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    9. [9]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    10. [10]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    15. [15]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Chao Liu Huan Yu Jiaming Li Xi Yu Zhuangzhi Yu Yuxi Song Feng Zhang Qinfang Zhang Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075

    19. [19]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(5)
  • Abstract views(550)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return