Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation
- Corresponding author: Shijie Li, lishijie@zjou.edu.cn
Citation:
Kexin Dong, Chuqi Shen, Ruyu Yan, Yanping Liu, Chunqiang Zhuang, Shijie Li. Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation[J]. Acta Physico-Chimica Sinica,
;2024, 40(10): 231001.
doi:
10.3866/PKU.WHXB202310013
(1) Li, X.; He, F.; Wang, Z.; Xing, B. Eco-Environ. Health 2022, 1, 181. doi: 10.1016/j.eehl.2022.10.001
(2) Xu, H.; Jia, Y.; Sun, Z.; Su, J.; Liu, Q. S.; Zhou, Q.; Jiang, G. Eco-Environ. Health 2022, 1, 31. doi: 10.1016/j.eehl.2022.04.003
(3) Previšić, A.; Vilenica, M.; Vučković, N.; Petrović, M.; Rožman, M. Environ. Sci. Technol. 2021,55, 3736. doi: 10.1021/acs.est.0c07609
(4) Santos, A. J. D.; Barazorda-Ccahuana, H. L.; Caballero-Manrique, G.; Chérémond, Y.; Espinoza-Montero, P. J.; González-Rodríguez, J. R.; Jáuregui-Haza, U. J.; Lanza, M. R. V.; Nájera, A.; Oporto, C.; et al. Nat. Sustain. 2023,6, 349. doi: 10.1038/s41893-022-01042-z
(5) Jeon, I.; Ryberg, E. C.; Alvarez, P. J. J.; Kim, J.-H. Nat. Sustain. 2022, 5, 801. doi: 10.1038/s41893-022-00915-7
(6) Narayanan, M.; El-sheekh, M.; Ma, Y.; Pugazhendhi, A.; Natarajan, D.; Kandasamy, G.; Raja, R.; Kumar, R. M. S.; Kumarasamy, S.; Sathiyan, G.; et al. Environ. Pollut. 2022,300, 118922. doi: 10.1016/j.envpol.2022.118922
(7) Liu, Y.; Wang, K.; Zhou, Z.; Wei, X.; Xia, S.; Wang, X.-M.; Xie, Y. F.; Huang, X. Environ. Sci. Technol.2022, 56, 15220. doi: 10.1021/acs.est.2c06579
(8) Caban, M.; Stepnowski, P. Environ. Chem. Lett. 2021, 19, 3115. doi: 10.1007/s10311-021-01194-y
(9) Xu, C.; Anusuyadevi, P. R.; Aymonier, C.; Luque, R.; Marre, S. Chem. Soc. Rev. 2019, 48, 3868. doi: 10.1039/c9cs00102f
(10) Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Chem. Soc. Rev. 2022, 51, 3561. doi: 10.1039/D1CS01182K
(11) Kumar, A.; Choudhary, P.; Kumar, A.; Camargo, P. H.; Krishnan, V. Small 2021, 18, 2101638. doi: 10.1002/smll.202101638
(12) Liras, M.; Barawi, M.; de la O’Shea Peña, V. A. Chem. Soc. Rev. 2019, 48, 5454. doi: 10.1039/c9cs00377k
(13) Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Nature Energy 2022, 7, 13. doi: 10.1038/s41560-021-00919-1
(14) Wang, Q.; Fang, Z.; Zhang, W.; Zhang, D. Adv. Fiber Mater. 2022, 4, 342. doi: 10.1007/s42765-021-00122-7
(15) Gong, H.; Wang, L.; Zhou, K.; Zhang, D.; Zhang, Y.; Adamaki, V.; Bowen, C.; Sergejevs, A. Adv. Powder Mater. 2022, 1, 100025. doi: 10.1016/j.apmate.2021.11.011
(16) Shang, W.; Liu, W.; Cai, X.; Hu, J.; Guo, J.; Xin, C.; Li, Y.; Zhang, N.; Wang, N.; Hao, C.; et al. Adv. Powder Mater. 2023, 2, 100094. doi: 10.1016/j.apmate.2022.100094
(18) Zhang, Y.; Xu, J.; Zhou, J.; Wang, L. Chin. J. Catal. 2022, 43, 971. doi: 10.1016/S1872-2067(21)63934-7
(19) Liu, Z.; Tian, J.; Yu, C.; Fan, Q.; Liu, X. Chin. J. Catal. 2022, 43, 472. doi: 10.1016/S1872-2067(21)63876-7
(20) Chen, R.; Chen, J.; Che, H.; Zhou, G.; Ao, Y.; Liu, B. Chin. J. Struct. Chem. 2022, 41, 2201014. doi: 10.14102/j.cnki.0254-5861.2021-0027
(21) Jiao, L.; Jiang, H.-L. Chin. J. Catal. 2023, 45, 1. doi: 10.1016/S1872-2067(22)64193-7
(22) Zhou, P.; Luo, M.; Guo, S. Nat. Rev. Chem. 2022, 6, 823. doi: 10.1038/s41570-022-00434-1
(23) Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Adv. Fiber Mater. 2022, 4, 1620. doi: 10.1007/s42765-022-00189-w
(24) Xiao, W.; Yu, H.; Xu, C.; Pu, Z.; Cheng, X.; Yu, F.; Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2024, 180, 193. doi: 10.1016/j.jmst.2023.08.021
(25) Xing, Y.; Liu, S. Chin. J. Struct. Chem. 2022, 41, 2209056. doi: 10.14102/j.cnki.0254-5861.2022-0188
(26) Selvaraj, V.; Ong, W.-J.; Pandikumar, A. Coordin. Chem. Rev. 2022, 464, 214541. doi: 10.1016/j.ccr.2022.214541
(27) Gibson, E. A. Nat. Catal.2021, 4, 740. doi: 10.1038/s41929-021-00678-y
(28) Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 139, 167. doi: 10.1016/j.jmst.2022.08.030
(29) Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Chem. Rev. 2022, 122, 10484. doi: 10.1021/acs.chemrev.1c00473
(30) Zhang, Y.; Zhang, L.; Zeng, D.; Wang, W.; Wang, J.; Wang, W.; Wang, W. Chin. J. Catal. 2022, 43, 2690. doi: 10.1016/S1872-2067(22)64114-7
(31) Sharifi, T.; Crmaric, D.; Kovacic, M.; Popovic, M.; Rokovic, M. K.; Kusic, H.; Jozić, D.; Ambrožić, G.; Kralj, D.; Kontrec, J.; et al. J. Environ. Chem. Eng. 2021, 9, 106025. doi: 10.1016/j.jece.2021.106025
(32) Chen, Z.; Wei, W.; Chen, H.; Ni, B.-J. Eco-Environ. Health 2022, 1, 86. doi: 10.1016/j.eehl.2022.05.001
(33) Zhai, H.; Liu, Z.; Xu, L.; Liu, T.; Fan, Y.; Jin, L.; Dong, R.; Yi, Y.; Li, Y. Adv. Fiber Mater. 2022,4, 1595. doi: 10.1007/s42765-022-00192-1
(34) Liu, C.; Zhang, Y.; Wu, J.; Dai, H.; Ma, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2022, 114, 81. doi: 10.1016/j.jmst.2021.12.003
(35) Ng, S.-F.; Chen, X.; Foo, J. J.; Xiong, M.; Ong, W.-J. Chin. J. Catal. 2023, 47, 150. doi: 10.1016/S1872-2067(23)64417-1
(36) Li, Z.; Zhou, Y.; Zhou, Y.; Wang, K.; Yun, Y.; Chen, S.; Jiao, W.; Chen, L.; Zou, B.; Zhu, M. Nat. Comm.2023, 14, 5742. doi: 10.1038/s41467-023-41522-0
(37) Chellapandi, T.; Madhumitha, G.; Roopan, S. M.; Manjupriya, R.; Arunachalapandi, M.; Pouthika, K.; Elamathi, M. Sep. Purif. Technol. 2023, 307, 122865. doi: 10.1016/j.seppur.2022.122865
(38) Peng, C.; Han, L.; Huang, J.; Wang, S.; Zhang, X.; Chen, H. Chin. J. Catal. 2022, 43, 410. doi: 10.1016/S1872-2067(21)63813-5
(39) Debnath, B.; Singh, S.; Hossain, S. M.; Krishnamurthy, S.; Polshettiwar, V.; Ogal, S. Langmuir 2022,38, 3139. doi: 10.1021/acs.langmuir.1c03127
(40) Sathish, C.; Premkumar, S.; Chu, X.; Yu, X.; Breese, M. B. H.; Al-Abri, M.; Al-Muhtaseb, A. a. H.; Karakoti, A.; Yi, J.; Vinu, A. Angew. Chem. Int. Ed. 2021, 133, 21412. doi: 10.1002/ange.202108605
(41) Zhou, D.; Luo, H.; Zhang, F.; Wu, J.; Yang, J.; Wang, H. Adv. Fiber Mater. 2022, 4, 1094. doi: 10.1007/s42765-022-00149-4
(42) Zhang, J.; Wang, X.; Shen, K.; Lu, W.; Wang, J.; Chen, F. Adv. Fiber Mater. 2023, 5, 168. doi: 10.1007/s42765-022-00205-z
(43) Debnath, B.; Hossain, S. M.; Sadhu, A.; Singh, S.; Polshettiwar, V.; Ogale, S. ACS Appl. Mater. Interfaces 2022, 14, 37076. doi: 10.1021/acsami.2c03758
(44) Li, J.; Wang, Y.; Wang, Y.; Guo, Y.; Zhang, S.; Song, H.; Li, X.; Gao, Q.; Shang, W.; Hu, S.; et al. Nano Mater. Sci. 2023, 5, 237. doi: 10.1016/j.nanoms.2023.02.003
(45) Vadivel, S.; Fujii, M.; Rajendran, S. Chemosphere 2022, 307, 135716. doi: 10.1016/j.chemosphere.2022.135716
(46) Wu, B.; Sun, T.; Liu, N.; Lu, L.; Zhang, R.; Shi, W.; Cheng, P. ACS Appl. Mater. Interfaces 2022,14, 26742. doi: 10.1021/acsami.2c04729
(47) Bai, S.; Qiu, H.; Song, M.; He, G.; Wang, F.; Liu, Y.; Guo, L. eScience 2022, 2, 428. doi: 10.1016/j.esci.2022.06.006
(48) Sun, X.; Li, L.; Jin, S.; Shao, W.; Wang, H.; Zhang, X.; Xie, Y. eScience 2023, 3, 100095. doi: 10.1016/j.esci.2023.100095
(49) Jia, X.; Shen, Z.; Han, Q.; Bi, H. Chin. J. Catal. 2022, 43, 288. doi: 10.1016/S1872-2067(20)63768-8
(50) Xia, P.; Pan, X.; Jiang, S.; Yu, J.; He, B.; Ismail, P. M.; Bai, W.; Yang, J.; Yang, L.; Zhang, H.; et al.Adv. Mater. 2022, 34, 2200563. doi: 10.1002/adma.202200563
(51) Liu, C.; Xiao, W.; Liu, X.; Wang, Q.; Hu, J.; Zhang, S.; Xu, J.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 161, 123. doi: 10.1016/j.jmst.2023.04.007
(52) Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/S1872-2067(23)64444-4
(53) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 202300643. doi: 10.1002/adma.202300643
(54) Zhao, Y.; Qin, X.; Zhao, X.; Wang, X.; Tan, H.; Sun, H.; Yan, G.; Li, H.; Ho, W.; Lee, S.-C. Chin. J. Catal. 2022, 43, 771. doi: 10.1016/S1872-2067(21)63843-3
(55) Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Chin. J. Struct. Chem. 2022, 41, 2201034. doi: 10.14102/j.cnki.0254-5861.2021-0046
(56) Han, S.; Li, B.; Huang, L.; Xi, H.; Ding, Z.; Long, J. Chin. J. Struct. Chem. 2022, 41, 2201007. doi: 10.14102/j.cnki.0254-5861.2021-0026
(57) Saravanakumar, K.; Maheskumar, V.; Yea, Y.; Yoon, Y.; Muthuraj, V.; Park, C. M. Compos. Part B: Eng. 2022,234, 109726. doi: 10.1016/j.compositesb.2022.109726
(60) Qaraah, F. A.; Mahyoub, S. A.; Hezam, A.; Qaraah, A.; Drmosh, Q. A.; Xiu, G. Chin. J. Catal. 2022,43, 2637. doi: 10.1016/S1872-2067(21)64038-X
(61) Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J. B.; Yu, J. Chin. J. Struct. Chem. 2022, 41, 2206003. doi: 10.14102/j.cnki.0254-5861.2022-0150
(62) Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. Chin. J. Catal. 2023, 51, 101. doi: 10.1016/S1872-2067(23)64479-1
(64) Zhao, Z.; Bian, J.; Zhao, L.; Wu, H.; Xu, S.; Sun, L.; Li, Z.; Zhang, Z.; Jing, L. Chin. J. Catal. 2022, 43, 1331. doi: 10.1016/S1872-2067(21)64005-6
(65) Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008
(66) Cai, M.; Liu, Y.; Dong, K.; Chen, X.; Li, S. Chin. J. Catal. 2023, 52, 239. doi: 10.1016/S1872-2067(23)64496-1
(67) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1
(68) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470
(71) Li, S.; Cai, M.; Liu, Y.; Wang, C.; Yan, R.; Chen, X. Adv. Powder Mater. 2023, 2, 100073. doi: 10.1016/j.apmate.2022.100073
(72) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/ange.202218688
(73) Sun, L.; Li, L.; Fan, J.; Xu, Q.; Ma, D. J. Mater. Sci. Technol. 2022, 123, 41. doi: 10.1016/j.jmst.2021.12.065
(74) Li, S.; Dong, K.; Cai, M.; Li, X.; Chen, X. eScience 2024, 4, 100208. doi: 10.1016/j.esci.2023.100208
(75) He, S.; Zhai, C.; Fujitsuka, M.; Kim, S.; Zhu, M.; Yin, R.; Zeng, L.; Majima, T. Appl. Catal. B 2021,281, 119479. doi: 10.1016/j.apcatb.2020.119479
(76) Grilla, E.; Petala, A.; Frontistis, Z.; Konstantinou, I. K.; Kondarides, D. I.; Mantzavinos, D. Appl. Catal. B 2018, 231, 73. doi: 10.1016/j.apcatb.2018.03.011
(77) Cai, T.; Zeng, W.; Liu, Y.; Wang, L.; Dong, W.; Chen, H.; Xia, X. Appl. Catal. B 2020, 263, 118327. doi: 10.1016/j.apcatb.2019.118327
(78) Zhu, Y.; Zhuang, Y.; Wang, L.; Tang, H.; Meng, X.; She, X. Chin. J. Catal. 2022, 43, 2558. doi: 10.1016/S1872-2067(22)64099-3
(79) Wang, Y.; Han, D.; Wang, Z.; Gu, F. ACS Appl. Mater. Interfaces 2023, 15, 22085. doi: 10.1021/acsami.3c01255
(80) van Turnhout, L.; Hattori, Y.; Meng, J.; Zheng, K.; Sá, J. Nano Lett. 2020, 20, 8220. doi: 10.1021/acs.nanolett.0c03344
(81) Temerov, F.; Pham, K.; Juuti, P.; Mäkelä, J.; Grachova, E. V.; Kumar, S.; Eslava, S.; Saarinen, J. J. ACS Appl. Mater. Interfaces 2020, 12, 41200. doi: 10.1021/acsami.0c08624
(82) Koya, A. N.; Zhu, X.; Ohannesian, N.; Yanik, A. A.; Alabastri, A.; Proietti Zaccaria, R.; Krahne, R.; Shih, W.-C.; Garoli, D. ACS Nano 2021, 15, 6038. doi: 10.1021/acsnano.0c10945
(83) Nayak, S.; Parida, K. M. ACS Omega 2018, 3, 7324. doi: 10.1021/acsomega.8b00847
(84) Guo, M.; Xing, Z.; Zhao, T.; Qiu, Y.; Tao, B.; Li, Z.; Zhou, W. Appl. Catal. B 2020, 272, 118978. doi: 10.1016/j.apcatb.2020.118978
(85) Dong, T.; Wang, P.; Yang, P. Int. J. Hydrog. Energy 2018, 43, 20607. doi: 10.1016/j.ijhydene.2018.09.079
(86) Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41, 2206015. doi: 10.14102/j.cnki.0254-5861.2022-0108
(87) Liang, Z.; Xue, Y.; Wang, X.; Zhang, X.; Tian, J.; Cui, H. Nano Mater. Sci. 2023, 5, 202. doi: 10.1016/j.nanoms.2022.03.001
(89) Li, S.; Cai, M.; Wang, C.; Liu, Y. Adv. Fiber Mater. 2023, 5, 994. doi: 10.1007/s42765-022-00253-5
(90) Liu, D.; Xue, C. Adv. Mater.2021, 33, 2005738. doi: 10.1002/adma.202005738
(92) Muñoz-Batista, M. J.; Ballari, M. M.; Kubacka, A.; Alfano, O. M.; Fernández-García, M. Chem. Soc. Rev. 2019,48, 637. doi: 10.1039/C8CS00108A
(93) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668
(94) Zhang, H.; Gu, H.; Wang, X.; Chang, S.; Li, Q.; Dai, W.-L. Chem. Eng. J. 2023, 457, 141185. doi: 10.1016/j.cej.2022.141185
(95) Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Chao Liu , Huan Yu , Jiaming Li , Xi Yu , Zhuangzhi Yu , Yuxi Song , Feng Zhang , Qinfang Zhang , Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010