Citation: Chongjing Liu,  Yujian Xia,  Pengjun Zhang,  Shiqiang Wei,  Dengfeng Cao,  Beibei Sheng,  Yongheng Chu,  Shuangming Chen,  Li Song,  Xiaosong Liu. Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 100013. doi: 10.3866/PKU.WHXB202309036 shu

Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy

  • Corresponding author: Shuangming Chen,  Xiaosong Liu, 
  • Received Date: 20 September 2023
    Revised Date: 17 October 2023
    Accepted Date: 23 October 2023

    Fund Project: The project was supported by the National Key Research and Development Program of China (2019YFA0405601), the Youth Innovation Promotion Association of CAS (2022457), the National Natural Science Foundation of China (12322515, U2032113, 22075264, 12205303), and the Fundamental Research Funds for the Central Universities (WK2060000039, WK2310000108).

  • The surface of energy material is the direct place where energy storage and conversion reactions occur. Thus, the surface chemistry and the structure of the material under real reaction conditions are the key descriptors to clarify the reaction mechanism. However, such surfaces are usually immersed in gaseous or liquid environments under real reaction conditions, so it is not a simple task to identify the real physical and chemical properties of the interface under in situ conditions. X-ray photoelectron spectroscopy (XPS), as a surface-sensitive technique, is one of the main techniques for studying complex composition and electronic structure of material surfaces. However, due to the limited mean free path of photoelectrons in gas, liquid and solid media, the traditional XPS is confined to vacuum conditions, which poses a significant obstacle for studying solid-gas and solid-liquid interfaces under in situ conditions. With the introduction of differentially pumped analyzers and electrostatic lenses system, this limitation no longer restricts XPS only suitable for ultra-high vacuum conditions. With the active development of synchrotron radiation sources worldwide, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) offers advanced features combined with the benefits of synchrotron radiation sources. Compared to traditional X-ray source, synchrotron radiation sources have significantly higher photon flux and much smaller spot size, which enables more electrons to escape to the electron analyzer, therefore can effectively improve the signal-to-noise ratio and the maximum working pressure, and the continuous wavelength tunability of synchrotron radiation makes experimental measurements more flexible and provides more information on the surface reaction. Over the years, NAP-XPS has rapidly emerged as an influential tool for investigating various solid-gas and solid-liquid interfaces, reflecting the importance of understanding reaction mechanisms and structure-performance relationship of materials under conditions closer to practical reacting conditions, particularly in heterogeneous catalysis. Information at atomic scale can be delivered with surface and interface sensitivity by NAP-XPS in conjunction with several advanced spectroscopy and microscopy techniques. In this paper, we provide a concise overview of recent notable advancements in NAP-XPS to showcase the novel insights generated by research on solid-gas and solid-liquid interfaces in cutting-edge scientific fields. This demonstrates how the knowledge gained from NAP-XPS studies can contribute to a fundamental understanding of reaction mechanisms at a molecular level. Finally, we discuss new challenges and prospects to ensure a comprehensive understanding of this technique and, hopefully, inspire fresh ideas.
  • 加载中
    1. [1]

      (1) Chu,S.;Majumdar,A.Nature 2012, 488,294.doi:10.1038/nature11475

    2. [2]

      (2) Bockris,J.O.M.Int.J.Hydrogen Energy 2013, 38,2579.doi:10.1016/j.ijhydene.2012.12.026

    3. [3]

      (3) Vasileff,A.;Xu,C.;Jiao,Y.;Zheng,Y.;Qiao,S.-Z.Chem 2018, 4,1809.doi:10.1016/j.chempr.2018.05.001

    4. [4]

      (4) Zheng,Y.;Jiao,Y.;Vasileff,A.;Qiao,S.-Z.Angew.Chem.Int.Ed. 2018, 57,7568.doi:10.1002/anie.201710556

    5. [5]

      (5) Nam,D.-H.;Bushuyev,O.S.;Li,J.;De Luna,P.;Seifitokaldani,A.;Dinh,C.-T.;García de Arquer,F.P.;Wang,Y.;Liang,Z.;Proppe,A.H.;et al. J.Am.Chem.Soc. 2018, 140,11378.doi:10.1021/jacs.8b06407

    6. [6]

      (6) Fabbri,E.;Nachtegaal,M.;Binninger,T.;Cheng,X.;Kim,B.-J.;Durst,J.;Bozza,F.;Graule,T.;Schäublin,R.;Wiles,L.;et al. Nat.Mater. 2017, 16,925.doi:10.1038/nmat4938

    7. [7]

      (7) Lunkenbein,T.;Schumann,J.;Behrens,M.;Schlögl,R.;Willinger,M.G.Angew.Chem. 2015, 54,4544.doi:10.1002/anie.201411581

    8. [8]

    9. [9]

      (9) Han,Y.;Zhang,H.;Yu,Y.;Liu,Z.ACS Catal. 2021, 11,1464.doi:10.1021/acscatal.0c04251

    10. [10]

      (10) Roy,K.;Artiglia,L.;van Bokhoven,J.A.ChemCatChem 2018, 10,666.doi:10.1002/cctc.201701522

    11. [11]

      (11) Nguyen,L.;Tao,F.F.;Tang,Y.;Dou,J.;Bao,X.J.Chem.Rev. 2019, 119,6822.doi:10.1021/acs.chemrev.8b00114

    12. [12]

      (12) Bluhm,H.J.Electron Spectrosc.Relat.Phenom. 2010, 177,71.doi:10.1016/j.elspec.2009.08.006

    13. [13]

      (13) Liu,X.;Yang,W.;Liu,Z.Adv.Mater. 2014, 26,7710.doi:10.1002/adma.201304676

    14. [14]

      (14) Starr,D.E.;Liu,Z.; Hävecker, M.; Knop-Gericke, A.; Bluhm, H. Chem. Soc. Rev. 2013, 42, 5833. doi: 10.1039/c3cs60057b

    15. [15]

      (15) Karslıoğlu, O.; Nemšák, S.; Zegkinoglou, I.; Shavorskiy, A.; Hartl, M.; Salmassi, F.; Gullikson, E. M.; Ng, M. L.; Rameshan, C.; Rude, B.; et al. Faraday Discuss. 2015, 180, 35. doi: 10.1039/C5FD00003C

    16. [16]

      (16) Axnanda, S.; Crumlin, E. J.; Mao, B.; Rani, S.; Chang, R.; Karlsson, P. G.; Edwards, M. O. M.; Lundqvist, M.; Moberg, R.; Ross, P.; et al. Sci. Rep. 2015, 5, 9788. doi: 10.1038/srep09788

    17. [17]

      (17) Siegbahn, H. J. Phys. Chem. 1985, 89, 897. doi: 10.1021/j100252a005

    18. [18]

      (18) Siegbahn, H.; Siegbahn, K. J. Electron Spectrosc. Relat. Phenom. 1973, 2, 319. doi: 10.1016/0368-2048(73)80023-4

    19. [19]

      (19) Joyner, R. W.; Roberts, M. W.; Yates, K. Surf. Sci. 1979, 87, 501. doi: 10.1016/0039-6028(79)90544-2

    20. [20]

      (20) Ruppender, H. J.; Grunze, M.; Kong, C. W.; Wilmers, M. Surf. Interface Anal. 1990, 15, 245. doi: 10.1002/sia.740150403

    21. [21]

      (21) Ogletree, D. F.; Bluhm, H.; Lebedev, G.; Fadley, C. S.; Hussain, Z.; Salmeron, M. Rev. Sci. Instrum. 2002, 73, 3872. doi: 10.1063/1.1512336

    22. [22]

      (22) Bluhm, H.; Hävecker, M.; Knop-Gericke, A.; Kleimenov, E.; Schlögl, R.; Teschner, D.; Bukhtiyarov, V. I.; Ogletree, D. F.; Salmeron, M. J. Phys. Chem. B 2004, 108, 14340. doi: 10.1021/jp040080j

    23. [23]

      (23) Frank Ogletree, D.; Bluhm, H.; Hebenstreit, E. D.; Salmeron, M. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 601, 151. doi: 10.1016/j.nima.2008.12.155

    24. [24]

      (24) Soler, L.; Casanovas, A.; Escudero, C.; Pérez-Dieste, V.; Aneggi, E.; Trovarelli, A.; Llorca, J. ChemCatChem 2016, 8, 2748. doi: 10.1002/cctc.201600615

    25. [25]

      (25) Toyoshima, R.; Yoshida, M.; Monya, Y.; Kousa, Y.; Suzuki, K.; Abe, H.; Mun, B. S.; Mase, K.; Amemiya, K.; Kondoh, H. J. Phys. Chem. C 2012, 116, 18691. doi: 10.1021/jp301636u

    26. [26]

      (26) Schnadt, J.; Knudsen, J.; Andersen, J. N.; Siegbahn, H.; Pietzsch, A.; Hennies, F.; Johansson, N.; Martensson, N.; Ohrwall, G.; Bahr, S.; et al. J. Synchrotron Radiat. 2012, 19, 701. doi: 10.1107/S0909049512032700

    27. [27]

      (27) Cai, J.; Dong, Q.; Han, Y.; Mao, B.-H.; Zhang, H.; Karlsson, P. G.;Åhlund, J.; Tai, R.-Z.; Yu, Y.; Liu, Z. Nucl. Sci. Tech. 2019, 30, 81. doi: 10.1007/s41365-019-0608-0

    28. [28]

      (28) Zhang, C.; Grass, M. E.; Yu, Y.; Gaskell, K. J.; DeCaluwe, S. C.; Chang, R.; Jackson, G. S.; Hussain, Z.; Bluhm, H.; Eichhorn, B. W.; et al. ACS Catal. 2012, 2, 2297. doi: 10.1021/cs3004243

    29. [29]

      (29) Zhang, C.; Yu, Y.; Grass, M. E.; Dejoie, C.; Ding, W.; Gaskell, K.; Jabeen, N.; Hong, Y. P.; Shavorskiy, A.; Bluhm, H.; et al. J. Am. Chem. Soc. 2013, 135, 11572. doi: 10.1021/ja402604u

    30. [30]

      (30) Zhang, C.; Grass, M. E.; McDaniel, A. H.; DeCaluwe, S. C.; Gabaly, F. E.; Liu, Z.; McCarty, K. F.; Farrow, R. L.; Linne, M. A.; Hussain, Z.; et al. Nat. Mater. 2010, 9, 944. doi: 10.1038/nmat2851

    31. [31]

      (31) Yu, Y.; Mao, B.; Geller, A.; Chang, R.; Gaskell, K.; Liu, Z.; Eichhorn, B. W. Phys. Chem. Chem. Phys. 2014, 16, 11633. doi: 10.1039/C4CP01054J

    32. [32]

      (32) Salmeron, M. Top. Catal. 2018, 61, 2044. doi: 10.1007/s11244-018-1069-0

    33. [33]

      (33) Bukhtiyarov, V. I.; Kaichev, V. V.; Prosvirin, I. P. Top. Catal. 2005, 32, 3. doi: 10.1007/s11244-005-9254-3

    34. [34]

      (34) Cai, J.; Han, Y.; Chen, S.; Crumlin, E. J.; Yang, B.; Li, Y.; Liu, Z. J. Phys. Chem. C 2019, 123, 12176. doi: 10.1021/acs.jpcc.8b11698

    35. [35]

    36. [36]

      (36) Eren, B.; Heine, C.; Bluhm, H.; Somorjai, G. A.; Salmeron, M. J. Am. Chem. Soc. 2015, 137, 11186. doi: 10.1021/jacs.5b07451

    37. [37]

      (37) Duke, A. S.; Galhenage, R. P.; Tenney, S. A.; Ammal, S. C.; Heyden, A.; Sutter, P.; Chen, D. A. J. Phys. Chem. C 2015, 119, 23082. doi: 10.1021/acs.jpcc.5b07625

    38. [38]

      (38) Jones, T. E.; Rocha, T. C. R.; Knop-Gericke, A.; Stampfl, C.; Schlögl, R.; Piccinin, S. Phys. Chem. Chem. Phys. 2015, 17, 9288. doi: 10.1039/C5CP00342C

    39. [39]

      (39) Adler, S. B. Chem. Rev. 2004, 104, 4791. doi: 10.1021/cr020724o

    40. [40]

      (40) Feng, Z. A.; El Gabaly, F.; Ye, X.; Shen, Z.-X.; Chueh, W. C. Nat. Commun. 2014, 5, 4374. doi: 10.1038/ncomms5374

    41. [41]

      (41) Chen, D.; Guan, Z.; Zhang, D.; Trotochaud, L.; Crumlin, E.; Nemsak, S.; Bluhm, H.; Tuller, H. L.; Chueh, W. C. Nat. Catal. 2020, 3, 116. doi: 10.1038/s41929-019-0401-9

    42. [42]

      (42) Gopal, C. B.; Gabaly, F. E.; McDaniel, A. H.; Chueh, W. C. Adv. Mater. 2016, 28, 4692. doi: 10.1002/adma.201506333

    43. [43]

      (43) Feng, Z. A.; Machala, M. L.; Chueh, W. C. Phys. Chem. Chem. Phys. 2015, 17, 12273. doi: 10.1039/C5CP00114E

    44. [44]

      (44) Lu, Y.-C.; Crumlin, E. J.; Veith, G. M.; Harding, J. R.; Mutoro, E.; Baggetto, L.; Dudney, N. J.; Liu, Z.; Shao-Horn, Y. Sci. Rep. 2012,2, 715. doi: 10.1038/srep00715

    45. [45]

      (45) Lu, Y.-C.; Crumlin, E. J.; Carney, T. J.; Baggetto, L.; Veith, G. M.; Dudney, N. J.; Liu, Z.; Shao-Horn, Y. J. Phys. Chem. C 2013, 117, 25948. doi: 10.1021/jp409453s

    46. [46]

      (46) Itkis, D. M.; Semenenko, D. A.; Kataev, E. Y.; Belova, A. I.; Neudachina, V. S.; Sirotina, A. P.; Hävecker, M.; Teschner, D.; Knop-Gericke, A.; Dudin, P.; et al. Nano Lett. 2013, 13, 4697. doi: 10.1021/nl4021649

    47. [47]

      (47) Wang, J.; Bishop, S. R.; Sun, L.; Lu, Q.; Vardar, G.; Bliem, R.; Tsvetkov, N.; Crumlin, E. J.; Gallet, J.-J.; Bournel, F. J. Mater. Chem. A 2019,7, 15233. doi: 10.1039/C9TA03265G

    48. [48]

      (48) Lu, Q.; Vardar, G.; Jansen, M.; Bishop, S. R.; Waluyo, I.; Tuller, H. L.; Yildiz, B. Chem. Mater. 2018, 30, 2600. doi: 10.1021/acs.chemmater.7b05129

    49. [49]

      (49) Nenning, A.; Opitz, A. K.; Rameshan, C.; Rameshan, R.; Blume, R.; Hävecker, M.; Knop-Gericke, A.; Rupprechter, G.; Klötzer, B.; Fleig, J. J. Phys. Chem. C 2016, 120, 1461. doi: 10.1021/acs.jpcc.5b08596

    50. [50]

      (50) Katsaounis, A.; Teschner, D.; Zafeiratos, S. Top. Catal. 2018,61, 2142. doi: 10.1007/s11244-018-1073-4

    51. [51]

      (51) Espinós, J. P.; Rico, V. J.; González-Cobos, J.; Sánchez-Valencia, J. R.; Pérez-Dieste, V.; Escudero, C.; de Lucas-Consuegra, A.; González-Elipe, A. R. J. Catal. 2018, 358, 27. doi: 10.1016/j.jcat.2017.11.027

    52. [52]

      (52) Mao, B.; Dai, Y.; Cai, J.; Li, Q.; Jiang, C.; Li, Y.; Xie, J.; Liu, Z. Top. Catal. 2018, 61, 2123. doi: 10.1007/s11244-018-1066-3

    53. [53]

      (53) Papaefthimiou, V.; Shishkin, M.; Niakolas, D. K.; Athanasiou, M.; Law, Y. T.; Arrigo, R.; Teschner, D.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R.; et al. Adv. Energy Mater. 2013, 3, 762. doi: 10.1002/aenm.201200727

    54. [54]

      (54) Wu, L.-W.; Liu, C.; Han, Y.; Yu, Y.; Liu, Z.; Huang, Y.-F. J. Chem. Phys. 2023, 158, 151102. doi: 10.1063/5.0138672

    55. [55]

      (55) Lin, W.; Bao, W.; Cai, J.; Cai, X.; Zhao, H.; Zhang, Y.; Deng, Y.; Yang, S.; Zhou, Z.; Liu, Z. Appl. Surf. Sci. 2023, 615, 156278. doi: 10.1016/j.apsusc.2022.156278

    56. [56]

      (56) Ling, Y.; Luo, J.; Ran, Y.; Cao, Y.; Huang, W.; Cai, J.; Liu, Z.; Li, W.-X.; Yang, F.; Bao, X. J. Energy Chem. 2022, 72, 258. doi: 10.1016/j.jechem.2022.03.009

    57. [57]

      (57) Yi, Z.; Lin, L.; Chang, Y.; Luo, X.; Gao, J.; Mu, R.; Ning, Y.; Fu, Q.; Bao, X. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2120716119. doi: 10.1073/pnas.2120716119

    58. [58]

      (58) Wang, C.; Meng, C.; Li, S.; Zhang, G.; Ning, Y.; Fu, Q. J. Am. Chem. Soc. 2021, 143, 17843. doi: 10.1021/jacs.1c09429

    59. [59]

      (59) Li, R.; Xu, X.; Zhu, B.; Li, X.-Y.; Ning, Y.; Mu, R.; Du, P.; Li, M.; Wang, H.; Liang, J.; et al. Nat. Commun. 2021, 12, 1406. doi: 10.1038/s41467-021-21552-2

    60. [60]

      (60) Zhang, X.; Zhang, M.; Deng, Y.; Xu, M.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B.; Yao, S.; Zhang, X.; et al. Nature 2021,589, 396. doi: 10.1038/s41586-020-03130-6

    61. [61]

      (61) Yao, S.; Lin, L.; Liao, W.; Rui, N.; Li, N.; Liu, Z.; Cen, J.; Zhang, F.; Li, X.; Song, L.; et al. ACS Catal. 2019, 9, 9087. doi: 10.1021/acscatal.9b01945

    62. [62]

      (62) Zakharchenko, T. K.; Belova, A. I.; Frolov, A. S.; Kapitanova, O. O.; Velasco-Velez, J.-J.; Knop-Gericke, A.; Vyalikh, D.; Itkis, D. M.; Yashina, L. V. Top. Catal. 2018, 61, 2114. doi: 10.1007/s11244-018-1072-5

    63. [63]

      (63) Jiang, C. G.; Zhang, H.; Li, P.; Zhan, X. Y.; Liu, Z. J.; Wang, L.; Mao, B. H.; Li, Q. T.; Wen, Z. Y.; Peng, Z. Q.; et al. Adv. Funct. Mater. 2022, 32, 2202518. doi: 10.1002/adfm.202202518

    64. [64]

      (64) Zhang, P.; Shou, H.; Xia, Y.; Wang, C.; Wei, S.; Xu, W.; Chen, Y.; Liu, Z.; Guo, X.; Zhu, K.; et al. Nano Lett. 2023, 23, 1401. doi: 10.1021/acs.nanolett.2c04712

    65. [65]

      (65) Kattel, S.; Yu, W.; Yang, X.; Yan, B.; Huang, Y.; Wan, W.; Liu, P.; Chen, J. G. Angew. Chem. Int. Ed. 2016, 55, 7968. doi: 10.1002/anie.201601661

    66. [66]

      (66) Ferrah, D.; Haines, A. R.; Galhenage, R. P.; Bruce, J. P.; Babore, A. D.; Hunt, A.; Waluyo, I.; Hemminger, J. C. ACS Catal. 2019, 9, 6783. doi: 10.1021/acscatal.9b01419

    67. [67]

      (67) Liu, C. Y.; Dong, Q.; Han, Y.; Zang, Y. J.; Zhang, H.; Xie, X. M.; Yu, Y.; Liu, Z. Chin. J. Catal. 2022, 43, 2858. doi: 10.1016/S1872-2067(22)64092-0

    68. [68]

      (68) Qian, J.; Baskin, A.; Liu, Z.; Prendergast, D.; Crumlin, E. J. J. Chem. Phys. 2020, 153, 040901. doi: 10.1063/5.0006242

    69. [69]

      (69) Tanuma, S.; Powell, C. J.; Penn, D. R. Surf. Interface Anal. 2011,43, 689. doi: 10.1002/sia.3522

    70. [70]

      (70) Crumlin, E. J.; Bluhm, H.; Liu, Z. J. Electron Spectrosc. Relat. Phenom. 2013, 190, 84. doi: 10.1016/j.elspec.2013.03.002

    71. [71]

      (71) Temperton, R. H.; Kawde, A.; Eriksson, A.; Wang, W.; Kokkonen, E.; Jones, R.; Gericke, S. M.; Zhu, S.; Quevedo, W.; Seidel, R.; et. al. J. Chem. Phys. 2022, 157, 244701. doi: 10.1063/5.0130222

    72. [72]

      (72) Stoerzinger, K. A.; Favaro, M.; Ross, P. N.; Hussain, Z.; Liu, Z.; Yano, J.; Crumlin, E. J. Top. Catal. 2018, 61, 2152. doi: 10.1007/s11244-018-1063-6

    73. [73]

      (73) Kolmakov, A.; Dikin, D. A.; Cote, L. J.; Huang, J.; Abyaneh, M. K.; Amati, M.; Gregoratti, L.; Günther, S.; Kiskinova, M. Nat. Nanotechnol. 2011,6, 651. doi: 10.1038/nnano.2011.130

    74. [74]

      (74) Velasco-Vélez, J. J.; Pfeifer, V.; Hävecker, M.; Weatherup, R. S.; Arrigo, R.; Chuang, C.-H.; Stotz, E.; Weinberg, G.; Salmeron, M.; Schlögl, R.; et al. Angew. Chem. Int. Ed. 2015, 54, 14554. doi: 10.1002/anie.201506044

    75. [75]

      (75) Cao, D.; Ye, K.; Moses, O. A.; Xu, W.; Liu, D.; Song, P.; Wu, C.; Wang, C.; Ding, S.; Chen, S.; et al. ACS Nano 2019, 13, 11733. doi: 10.1021/acsnano.9b05714

    76. [76]

      (76) Ali-Löytty, H.; Louie, M. W.; Singh, M. R.; Li, L.; Sanchez Casalongue, H. G.; Ogasawara, H.; Crumlin, E. J.; Liu, Z.; Bell, A. T.; Nilsson, A.; et al. J. Phys. Chem. C 2016, 120, 2247. doi: 10.1021/acs.jpcc.5b10931

    77. [77]

      (77) Favaro, M.; Valero-Vidal, C.; Eichhorn, J.; Toma, F. M.; Ross, P. N.; Yano, J.; Liu, Z.; Crumlin, E. J. J. Mater. Chem. A 2017, 5, 11634. doi: 10.1039/c7ta00409e

    78. [78]

      (78) Han, Y.; Axnanda, S.; Crumlin, E. J.; Chang, R.; Mao, B.; Hussain, Z.; Ross, P. N.; Li, Y.; Liu, Z. J. Phys. Chem. B 2018, 122, 666. doi: 10.1021/acs.jpcb.7b05982

    79. [79]

      (79) Salmeron, M.; Schlögl, R. Surf. Sci. Rep. 2008, 63, 169. doi: 10.1016/j.surfrep.2008.01.001

    80. [80]

      (80) Masuda, T.; Yoshikawa, H.; Noguchi, H.; Kawasaki, T.; Kobata, M.; Kobayashi, K.; Uosaki, K. Appl. Phys. Lett. 2013, 103, 111101. doi: 10.1063/1.4821180

    81. [81]

      (81) Gerischer, H. J. Electroanal. Chem. Interfacial Electrochem. 1975,58, 263. doi: 10.1016/S0022-0728(75)80359-7

    82. [82]

      (82) Heller, A. Acc. Chem. Res. 1981, 14, 154. doi: 10.1021/ar00065a004

    83. [83]

      (83) Barroso, M.; Pendlebury, S. R.; Cowan, A. J.; Durrant, J. R. Chem. Sci. 2013, 4, 2724. doi: 10.1039/C3SC50496D

    84. [84]

      (84) Le Formal, F.; Pendlebury, S. R.; Cornuz, M.; Tilley, S. D.; Grätzel, M.; Durrant, J. R. J. Am. Chem. Soc. 2014, 136, 2564. doi: 10.1021/ja412058x

    85. [85]

      (85) Klahr, B.; Hamann, T. J. Phys. Chem. C 2014, 118, 10393. doi: 10.1021/jp500543z

    86. [86]

      (86) Lichterman, M. F.; Hu, S.; Richter, M. H.; Crumlin, E. J.; Axnanda, S.; Favaro, M.; Drisdell, W.; Hussain, Z.; Mayer, T.; Brunschwig, B. S.; et al. Energy Environ. Sci. 2015, 8, 2409. doi: 10.1039/C5EE01014D

    87. [87]

      (87) Shavorskiy, A.; Ye, X.; Karslıoğlu, O.; Poletayev, A. D.; Hartl, M.; Zegkinoglou, I.; Trotochaud, L.; Nemšák, S.; Schneider, C. M.; Crumlin, E. J.; et al. J. Phys. Chem. Lett. 2017, 8, 5579. doi: 10.1021/acs.jpclett.7b02548

    88. [88]

      (88) Erickson, E. M.; Markevich, E.; Salitra, G.; Sharon, D.; Hirshberg, D.; de la Llave, E.; Shterenberg, I.; Rosenman, A.; Frimer, A.; Aurbach, D. J. Electrochem. Soc. 2015, 162, A2424. doi: 10.1149/2.0051514jes

    89. [89]

      (89) Kim, D. Y.; Lim, Y.; Roy, B.; Ryu, Y.-G.; Lee, S.-S. Phys. Chem. Chem. Phys. 2014, 16, 25789. doi: 10.1039/C4CP01259C

    90. [90]

      (90) Maibach, J.; Källquist, I.; Andersson, M.; Urpelainen, S.; Edström, K.; Rensmo, H.; Siegbahn, H.; Hahlin, M. Nat. Commun. 2019,10, 3080. doi: 10.1038/s41467-019-10803-y

    91. [91]

      (91) Lee, S.; Meyer, T. L.; Park, S.; Egami, T.; Lee, H. N. Appl. Phys. Lett. 2014, 105, 223515. doi: 10.1063/1.4903348

    92. [92]

      (92) Qazilbash, M. M.; Brehm, M.; Chae, B. G.; Ho, P. C.; Andreev, G. O.; Kim, B. J.; Yun, S. J.; Balatsky, A. V.; Maple, M. B.; Keilmann, F.; et al. Science 2007, 318, 1750. doi: 10.1126/science.1150124

    93. [93]

      (93) Lu, Q.; Bishop, S. R.; Lee, D.; Lee, S.; Bluhm, H.; Tuller, H. L.; Lee, H. N.; Yildiz, B. Adv. Funct. Mater. 2018, 28, 1803024. doi: 10.1002/adfm.201803024

    94. [94]

      (94) Connell, J. G.; Zorko, M.; Agarwal, G.; Yang, M.; Liao, C.; Assary, R. S.; Strmcnik, D.; Markovic, N. M. ACS Appl. Mater. Interfaces 2020,12, 36137. doi: 10.1021/acsami.0c09404

    95. [95]

      (95) Jay, R.; Tomich, A. W.; Zhang, J.; Zhao, Y.; De Gorostiza, A.; Lavallo, V.; Guo, J. ACS Appl. Mater. Interfaces 2019, 11, 11414. doi: 10.1021/acsami.9b00037

    96. [96]

      (96) Rajput, N. N.; Qu, X.; Sa, N.; Burrell, A. K.; Persson, K. A. J. Am. Chem. Soc. 2015, 137, 3411. doi: 10.1021/jacs.5b01004

    97. [97]

      (97) Connell, J. G.; Genorio, B.; Lopes, P. P.; Strmcnik, D.; Stamenkovic, V. R.; Markovic, N. M. Chem. Mater. 2016, 28, 8268. doi: 10.1021/acs.chemmater.6b03227

    98. [98]

      (98) Yu, Y.; Baskin, A.; Valero-Vidal, C.; Hahn, N. T.; Liu, Q.; Zavadil, K. R.; Eichhorn, B. W.; Prendergast, D.; Crumlin, E. J. Chem. Mater. 2017, 29, 8504. doi: 10.1021/acs.chemmater.7b03404

    99. [99]

      (99) Toney, M. F.; Howard, J. N.; Richer, J.; Borges, G. L.; Gordon, J. G.; Melroy, O. R.; Wiesler, D. G.; Yee, D.; Sorensen, L. B. Nature 1994,368, 444. doi: 10.1038/368444a0

    100. [100]

      (100) Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Nat. Nanotechnol. 2009, 4, 713. doi: 10.1038/nnano.2009.332

    101. [101]

      (101) Favaro, M.; Jeong, B.; Ross, P. N.; Yano, J.; Hussain, Z.; Liu, Z.; Crumlin, E. J. Nat. Commun. 2016, 7, 12695. doi: 10.1038/ncomms12695

    102. [102]

      (102) Brown, M. A.; Redondo, A. B.; Sterrer, M.; Winter, B.; Pacchioni, G.; Abbas, Z.; van Bokhoven, J. A. Nano Lett. 2013, 13, 5403. doi: 10.1021/nl402957y

    103. [103]

      (103) Brown, M. A.; Goel, A.; Abbas, Z. 2016, 55, 3790. doi: 10.1002/anie.201512025

    104. [104]

      (104) Li, X.; Zhang, H.; Ran, Y.; Ye, M.; Yang, F.; Han, Y.; Liu, Z. J. Phys. Chem. Lett. 2022, 13, 5677. doi: 10.1021/acs.jpclett.2c00605

    105. [105]

      (105) Dai, K.; Wu, J.; Zhuo, Z.; Li, Q.; Sallis, S.; Mao, J.; Ai, G.; Sun, C.; Li, Z.; Gent, W. E.; et al. Joule 2019, 3, 518. doi: 10.1016/j.joule.2018.11.014

    106. [106]

      (106) Tamenori, Y.; Morita, M.; Nakamura, T. J. Synchrotron Radiat. 2011,18, 747. doi: 10.1107/S0909049511027531

    107. [107]

      (107) Meng, X.; Guo, Z.; Wang, Y.; Zhang, H.; Han, Y.; Zhao, G.; Liu, Z.; Tai, R. J. Synchrotron Radiat. 2019, 26, 543. doi: 10.1107/S1600577518018179

    108. [108]

      (108) Zhang, H.; Li, X.; Wang, W.; Mao, B.; Han, Y.; Yu, Y.; Liu, Z. Rev. Sci. Instrum. 2020, 91,123108. doi: 10.1063/5.0020469

  • 加载中
    1. [1]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    2. [2]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    3. [3]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    4. [4]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    7. [7]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    10. [10]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    11. [11]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    12. [12]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    13. [13]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    14. [14]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    15. [15]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    16. [16]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    17. [17]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    18. [18]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    19. [19]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    20. [20]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

Metrics
  • PDF Downloads(2)
  • Abstract views(138)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return