Citation: Yanglin Jiang,  Mingqing Chen,  Min Liang,  Yige Yao,  Yan Zhang,  Peng Wang,  Jianping Zhang. Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 100012. doi: 10.3866/PKU.WHXB202309027 shu

Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone

  • Corresponding author: Peng Wang, wpeng_chem@ruc.edu.cn
  • Received Date: 15 September 2023
    Revised Date: 26 October 2023
    Accepted Date: 27 October 2023

    Fund Project: The project was supported by the Fundamental Research Funds for the Central Universities, the Research Funds of Renmin University of China (21XNH085), and the Natural Science Foundation of China (21673289). The computer resources were provided by Public Computing Cloud Platform of Renmin University of China.

  • Excited-state intramolecular proton transfer (ESIPT) is a fundamental photoreaction of significant importance in both chemical and biological systems. This phenomenon typically occurs in chromophores featuring intramolecular hydrogen bonding. Among the molecules undergoing ESIPT, 3-hydroxyflavone derivatives (3-HFs) have garnered significant attention due to their natural origins and environmentally responsive fluorescence properties. A particular 3-HF compound, 4'-N,N-diethylamino-3-hydroxybenzoflavone (D-HBF), distinguished by its extended π-system and red-shifted electronic absorption, has recently been identified as a potent fluorescent probe highly sensitive to changes in environmental polarity. In this study, we systematically explored the ESIPT reaction mechanism of D-HBF in three aprotic solvents: cyclohexane, diethyl ether, and tetrahydrofuran, each possessing varying polarities. Our investigation involved a combination of spectroscopic and theoretical methods. In all three solvents, we observed the characteristic dual emission bands associated with ESIPT, with the intensity ratio of these bands being influenced by the solvent. As solvent polarity increased, we noted a decrease in the rates of both the forward and reverse proton transfer (PT) reactions based on our analysis of fluorescent kinetics. However, the reverse PT was favored. Through density functional theory (DFT) and time-dependent DFT (TDDFT) calculations of bond lengths and bond angles of the intramolecular hydrogen bond in these solvents, we confirmed that the ESIPT reaction in D-HBF is driven by the strengthening of the excited-state hydrogen bond. Notably, upon increasing solvent polarity, the intramolecular hydrogen bonds in the excited N* state weakened, as evidenced by the up-shifted IR absorption frequency of the O―H stretching mode in the S1 state. Electron intensity analysis of frontier orbitals revealed characteristic intramolecular charge transfer (ICT) occurring in D-HBF upon photoexcitation, attributable to the introduction of a strong electron-donating group at the 4' position (4'-N,N-diethylamino-). Calculations of potential energy curves for the S0 and S1 states confirmed that the PT process tends to occur in the S1 state rather than the S0 state, and a more polar solvent generates a more significant potential barrier, hindering the corresponding ESIPT reaction. An analysis of the Gibbs free energy of ESIPT further confirmed that increasing solvent polarity favors the equilibrium shifting toward the N* state. This research lays the foundation for potential future applications of D-HBF as a biological fluorescent probe sensitive to environmental polarity.
  • 加载中
    1. [1]

      (1) Kuang, Z.; Guo, Q.; Wang, X.; Song, H.; Maroncelli, M.; Xia, A. J. Phys. Chem. Lett. 2018, 9, 4174. doi: 10.1021/acs.jpclett.8b01826

    2. [2]

      (2) Chen, Y.; Yang, Y.; Zhao, Y.; Liu, S.; Li, Y. Org. Chem. Front. 2019, 6, 218. doi: 10.1039/c8qo01111g

    3. [3]

      (3) Skilitsi, A. I.; Agathangelou, D.; Shulov, L.; Conyard, J.; Haacke, S., Mély, Y.; Klymchenko, A.; Léonard, J. Phys. Chem. Chem. Phys. 2018, 20, 7885. doi: 10.1039/c7cp08584b

    4. [4]

      (4) Chou, P.-T.; Martinez, M. L.; Clements, J. H. Chem. Phys. Lett. 1993, 204, 395. doi: 10.1016/0009-2614(93)89175-H

    5. [5]

      (5) Qin, T.; Liu, B.; Huang, Y.; Yang, K.; Zhu, K.; Luo, Z.; Pan, C.; Wang, L. Sens. Actuators B-Chem. 2018, 277, 484. doi: 10.1016/j.snb.2018.09.056

    6. [6]

      (6) Jiang, G.; Jin, Y.; Li, M.; Wang, H.; Xiong, M.; Zeng, W.; Yuan, H.; Liu, C.; Ren, Z.; Liu, C. Anal. Chem. 2020, 92, 10342. doi: 10.1021/acs.analchem.0c00390

    7. [7]

      (7) Hsieh, C.-C.; Jiang, C.-M.; Chou, P.-T. Acc. Chem. Res. 2010, 43, 1364. doi: 10.1021/ar1000499

    8. [8]

      (8) Demchenko, A. P.; Tang, K.-C.; Chou, P.-T. Chem. Soc. Rev. 2013, 42, 1379. doi: 10.1039/c2cs35195a

    9. [9]

      (9) Tomin, V. I.; Demchenko, A. P.; Chou, P.-T. J. Photochem. Photobiol. C 2015,22, 1. doi: 10.1016/j.jphotochemrev.2014.09.005

    10. [10]

      (10) Swinney, T. C.; Kelley, D. F. J. Chem. Phys. 1993, 99, 211. doi: 10.1063/1.465799

    11. [11]

      (11) Chou, P.-T.; Martinez, M. L.; Clements, J. H. J. Phys. Chem. 1993, 97, 2618. doi: 10.1021/j100113a024

    12. [12]

      (12) Shynkar, V. V.; Mély, Y.; Duportail, G.; Piémont, E.; Kiymchenko, A. S.; Demchenko, A. P. J. Phys. Chem. A 2003, 107, 9522. doi: 10.1021/jp035855n

    13. [13]

      (13) Roshal, A. D.; Organero, J. A.; Douhal, A. Chem. Phys. Lett. 2003,379, 53. doi: 10.1016/j.cplett.2003.08.008

    14. [14]

      (14) Douhal, A.; Sanz, M.; Carranza, M. A.; Organero, J. A.; Santos, L. Chem. Phys. Lett. 2004,394, 54. doi: 10.1016/j.cplett.2004.06.112

    15. [15]

      (15) Chou, P.-T.; Pu, S.-C.; Cheng, Y.-M.; Yu, W.-S.; Yu, Y.-C.; Hung, F.-T. Hu, W.-P. J. Phys. Chem. A 2005, 109, 3777. doi: 10.1021/jp044205w

    16. [16]

      (16) Rumble, C. A.; Breffke, J.; Maroncelli, M. J. Phys. Chem. B 2017, 121, 630. doi: 10.1021/acs.jpcb.6b12146

    17. [17]

      (17) Ghosh, D.; Batuta, S.; Das, S.; Begum, N. A.; Mandal, D. J. Phys. Chem. B 2015,119, 5650. doi: 10.1021/acs.jpcb.5b00021

    18. [18]

      (18) Ghosh, D.; Batuta, S.; Begum, N. A.; Mandal, D. Photochem. Photobiol. Sci. 2016,15, 266. doi: 10.1039/c5pp00377f

    19. [19]

      (19) Chen, Y.; Yang, Y.; Zhao, Y.; Liu, S.; Li, Y. Phys. Chem. Chem. Phys. 2019,21, 17711. doi: 10.1039/c9cp03752g

    20. [20]

      (20) Russo, M.; Štacko, P.; Nachtigallová, D.; Klάn, P. J. Org. Chem. 2020, 85, 3527. doi: 10.1021/acs.joc.9b03248

    21. [21]

      (21) Lazarus, L. S.; Benninghoff, A. D.; Berreau, L. M. Acc. Chem. Res. 2020, 53, 2273. doi: 10.1021/acs.accounts.0c00402

    22. [22]

      (22) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford CT, USA, 2016.

    23. [23]

      (23) Zhao, C.-C.; Jiang, Y.-L.; Gao, R.-Y.; Yao, H.-D.; Wang, P.; Zhang, J.-P. Chem. Phys. Lett. 2021, 774, 138616. doi: 10.1016/j.cplett.2021.138616

    24. [24]

      (24) Tseng, H.-W.; Liu, J.-Q.; Chen, Y.-A.; Chao, C.-M.; Liu, K.-M.; Chen, C.-L.; Lin, T.-C.; Hung, C.-H.; Chou, Y.-L.; Lin, T.-C.; et al. J. Phys. Chem. Lett. 2015,6, 1477. doi: 10.1021/acs.jpclett.5b00423

    25. [25]

      (25) Tang, K.-C.; Chang M.-J.; Lin T.-Y.; Pan, H.-A.; Fang, T.-C.; Chen, K.-Y.; Hung, W.-Y.; Hsu, Y.-H.; Chou, P.-T. J. Am. Chem. Soc. 2011, 133, 17738. doi: 10.1021/ja2062693

    26. [26]

      (26) Hirshfeld, F. L. Theor. Chim. Acta. 1977, 44, 129. doi: 10.1007/BF00549096

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    15. [15]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    16. [16]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    18. [18]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

Metrics
  • PDF Downloads(0)
  • Abstract views(176)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return