High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics
- Corresponding author: Malin Li, malinl@jlu.edu.cn Jihong Yu, jihong@jlu.edu.cn
Citation:
Shanghua Li, Malin Li, Xiwen Chi, Xin Yin, Zhaodi Luo, Jihong Yu. High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics[J]. Acta Physico-Chimica Sinica,
;2025, 41(1): 100003.
doi:
10.3866/PKU.WHXB202309003
Huang, J.; Zhu, Y.; Feng, Y.; Han, Y.; Gu, Z.; Liu, R.; Yang, D.; Chen, K.; Zhang, X.; Sun, W.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2208008.
doi: 10.3866/PKU.WHXB202208008
Song, M.; Tan, H.; Chao, D.; Fan, H. J. Adv. Funct. Mater. 2018, 28, 1802564. doi: 10.1002/adfm.201802564
doi: 10.1002/adfm.201802564
Xia, Y.; Wang, H.; Shao, G.; Wang, C.-A. J. Power Sources 2022, 540, 231659. doi: 10.1016/j.jpowsour.2022.231659
doi: 10.1016/j.jpowsour.2022.231659
Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S.-Z. Angew. Chem. Int. Ed. 2019, 58, 7823. doi: 10.1002/anie.201904174
doi: 10.1002/anie.201904174
Verma, V.; Kumar, S.; Manalastas, W.; Srinivasan, M. ACS Energy Lett. 2021, 6, 1773. doi: 10.1021/acsenergylett.1c00393
doi: 10.1021/acsenergylett.1c00393
Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F. Nano Energy 2020, 70, 104523. doi: 10.1016/j.nanoen.2020.104523
doi: 10.1016/j.nanoen.2020.104523
Wang, J.; Yang, Y.; Zhang, Y.; Li, Y.; Sun, R.; Wang, Z.; Wang, H. Energy Storage Mater. 2021, 35, 19. doi: 10.1016/j.ensm.2020.10.027
doi: 10.1016/j.ensm.2020.10.027
Zuo, Y.; Wang, K.; Pei, P.; Wei, M.; Liu, X.; Xiao, Y.; Zhang, P. Mater. Today Energy 2021, 20, 100692. doi: 10.1016/j.mtener.2021.100692
doi: 10.1016/j.mtener.2021.100692
Xie, C.; Li, Y.; Wang, Q.; Sun, D.; Tang, Y.; Wang, H. Carbon Energy 2020, 2, 540. doi: 10.1002/cey2.67
doi: 10.1002/cey2.67
Yi, Z.; Chen, G.; Hou, F.; Wang, L.; Liang, J. Adv. Energy Mater. 2021, 11, 2003065. doi: 10.1002/aenm.202003065
doi: 10.1002/aenm.202003065
Xiong, P.; Zhang, Y.; Zhang, J.; Baek, S. H.; Zeng, L.; Yao, Y.; Park, H. S. EnergyChem 2022, 4, 100076. doi: 10.1016/j.enchem.2022.100076
doi: 10.1016/j.enchem.2022.100076
Kang, L.; Cui, M.; Jiang, F.; Gao, Y.; Luo, H.; Liu, J.; Liang, W.; Zhi, C. Adv. Energy Mater. 2018, 8, 1801090. doi: 10.1002/aenm.201801090
doi: 10.1002/aenm.201801090
Dai, L.; Wang, T.; Jin, B.; Liu, N.; Niu, Y.; Meng, W.; Gao, Z.; Wu, X.; Wang, L.; He, Z. Surf. Coat. Technol. 2021, 427, 127813. doi: 10.1016/j.surfcoat.2021.127813
doi: 10.1016/j.surfcoat.2021.127813
Zhao, K.; Wang, C.; Yu, Y.; Yan, M.; Wei, Q.; He, P.; Dong, Y.; Zhang, Z.; Wang, X.; Mai, L. Adv. Mater. Interfaces 2018, 5, 1800848. doi: 10.1002/admi.201800848
doi: 10.1002/admi.201800848
Liang, P.; Yi, J.; Liu, X.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y.; Wang, Y.; Xia, Y.; Zhang, J. Adv. Funct. Mater. 2020, 30, 1908528. doi: 10.1002/adfm.201908528
doi: 10.1002/adfm.201908528
Liu, J.; Ye, C.; Wu, H.; Jaroniec, M.; Qiao, S.-Z. J. Am. Chem. Soc. 2023, 145, 5384. doi: 10.1021/jacs.2c13540
doi: 10.1021/jacs.2c13540
Bissannagari, M.; Shaik, M. R.; Cho, K. Y.; Kim, J.; Yoon, S. ACS Appl. Mater. Interfaces 2022, 14, 35613. doi: 10.1021/acsami.2c07551
doi: 10.1021/acsami.2c07551
Hieu, L. T.; So, S.; Kim, I. T.; Hur, J. Chem. Eng. J. 2021, 411, 128584. doi: 10.1016/j.cej.2021.128584
doi: 10.1016/j.cej.2021.128584
Guo, W.; Bai, X.; Cong, Z.; Pan, C.; Wang, L.; Li, L.; Chang, C.; Hu, W.; Pu, X. ACS Appl. Mater. Interfaces 2022, 14, 41988. doi: 10.1021/acsami.2c09909
doi: 10.1021/acsami.2c09909
Yuan, L.; Hao, J.; Kao, C.-C.; Wu, C.; Liu, H.-K.; Dou, S.-X.; Qiao, S.-Z. Energy Environ. Sci. 2021, 14, 5669. doi: 10.1039/d1ee02021h
doi: 10.1039/d1ee02021h
Li, M.; Chi, X.; Yu, J. PRX Energy 2022, 1, 031001. doi: 10.1103/PRXEnergy.1.031001
doi: 10.1103/PRXEnergy.1.031001
Chi, X.; Li, M.; Di, J.; Bai, P.; Song, L.; Wang, X.; Li, F.; Liang, S.; Xu, J.; Yu, J. Nature 2021, 592, 551. doi: 10.1038/s41586-021-03410-9
doi: 10.1038/s41586-021-03410-9
Andries, K. J.; Wit, B. D.; Grobet, P. J.; Bosmans, H. J. Zeolites 1991, 11, 116. doi: 10.1016/0144-2449(91)80404-N
doi: 10.1016/0144-2449(91)80404-N
Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Nat. Commun. 2018, 9, 1656. doi: 10.1038/s41467-018-04060-8
doi: 10.1038/s41467-018-04060-8
Qi, Y.; Xia, Y. Acta Phys. -Chim. Sin. 2023, 39, 2205045.
doi: 10.3866/PKU.WHXB202205045
Liu, H.; Wang, J.-G.; Hua, W.; Ren, L.; Sun, H.; Hou, Z.; Huyan, Y.; Cao, Y.; Wei, C.; Kang, F. Energy Environ. Sci. 2022, 15, 1872. doi: 10.1039/d2ee00209d
doi: 10.1039/d2ee00209d
Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer 1987, 28, 2324. doi: 10.1016/0032-3861(87)90394-6
doi: 10.1016/0032-3861(87)90394-6
Breck, D. W.; Acara, N. A. Crystalline zeolite Q. U.S. Patent US2991151A, 1961-07-04
Li, M.; Li, Z.; Wang, X.; Meng, J.; Liu, X.; Wu, B.; Han, C.; Mai, L. Energy Environ. Sci. 2021, 14, 3796. doi: 10.1039/d1ee00030f
doi: 10.1039/d1ee00030f
Jin, H.; Dai, S.; Zhu, Z.; Luo, Y.; Qi, B.; Liu, K.; Wu, T.; Zhuang, X.; Zhou, J.; Huang, L. ACS Appl. Energy Mater. 2022, 5, 10581. doi: 10.1021/acsaem.2c01340
doi: 10.1021/acsaem.2c01340
Andries, K. J.; Bosmans, H. J.; Grobet, P. J. Zeolites 1991, 11, 124. doi: 10.1016/0144-2449(91)80405-O
doi: 10.1016/0144-2449(91)80405-O
Clatworthy, E. B.; Debost, M.; Barrier, N.; Gascoin, S.; Boullay, P.; Vicente, A.; Gilson, J.-P.; Dath, J.-P.; Nesterenko, N.; Mintova, S. ACS Appl. Nano Mater. 2021, 4, 24. doi: 10.1021/acsanm.0c02925
doi: 10.1021/acsanm.0c02925
Deng, C.; Xie, X.; Han, J.; Tang, Y.; Gao, J.; Liu, C.; Shi, X.; Zhou, J.; Liang, S. Adv. Funct. Mater. 2020, 30, 2000599. doi: 10.1002/adfm.202000599
doi: 10.1002/adfm.202000599
Chen, D.; Hu, X.; Shi, L.; Cui, Q.; Wang, H.; Yao, H. Appl. Clay Sci. 2012, 59–60, 148. doi: 10.1016/j.clay.2012.02.017
doi: 10.1016/j.clay.2012.02.017
Beta, I. A.; Hunger, B.; Böhlmann, W.; Jobic, H. Microporous Mesoporous Mater. 2005, 79, 69. doi: 10.1016/j.micromeso.2004.10.022
doi: 10.1016/j.micromeso.2004.10.022
Pham, T. C. T.; Kim, H. S.; Yoon, K. B. Science 2011, 334, 1533. doi: 10.1126/science.1212472
doi: 10.1126/science.1212472
Agrawal, K. V.; Topuz, B.; Pham, T. C. T.; Nguyen, T. H.; Sauer, N.; Rangnekar, N.; Zhang, H.; Narasimharao, K.; Basahel, S. N.; Francis, L. F.; et al. Adv. Mater. 2015, 27, 3243. doi: 10.1002/adma.201405893
doi: 10.1002/adma.201405893
Xia, Y.; Hou, X.; Chen, X.; Mu, F.; Wang, Y.; Dai, L.; Liu, X.; Yu, Y.; Huang, K.; Xing, W.; et al. Chem. Eng. J. 2023, 465, 142912. doi: 10.1016/j.cej.2023.142912
doi: 10.1016/j.cej.2023.142912
Yang, H.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X.; He, P.; Zhou, H. Angew. Chem. Int. Ed. 2020, 59, 9377. doi: 10.1002/anie.202001844
doi: 10.1002/anie.202001844
Yang, H.; Qiao, Y.; Chang, Z.; Deng, H.; Zhu, X.; Zhu, R.; Xiong, Z.; He, P.; Zhou, H. Adv. Mater. 2021, 33, 2102415. doi: 10.1002/adma.202102415
doi: 10.1002/adma.202102415
Yu, Y.; Xiong, G.; Li, C.; Xiao, F.-S. Microporous Mesoporous Mater. 2001, 46, 23. doi: 10.1016/S1387-1811(01)00271-2
doi: 10.1016/S1387-1811(01)00271-2
Gujar, A. C.; Moye, A. A.; Coghill, P. A.; Teeters, D. C.; Roberts, K. P.; Price, G. L. Microporous Mesoporous Mater. 2005, 78, 131. doi: 10.1016/j.micromeso.2004.08.011
doi: 10.1016/j.micromeso.2004.08.011
Cui, Y.; Zhao, Q.; Wu, X.; Chen, X.; Yang, J.; Wang, Y.; Qin, R.; Ding, S.; Song, Y.; Wu, J.; et al. Angew. Chem. Int. Ed. 2020, 59, 16594. doi: 10.1002/anie.202005472
doi: 10.1002/anie.202005472
Liu, H.; Ye, Q.; Lei, D.; Hou, Z.; Hua, W.; Huyan, Y.; Li, N.; Wei, C.; Kang, F.; Wang, J.-G. Energy Environ. Sci. 2023, 16, 1610. doi: 10.1039/d2ee03952d
doi: 10.1039/d2ee03952d
Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K.-H.; Zhang, J.-G.; Thornton, K.; Dasgupta, N. P. ACS Cent. Sci. 2016, 2, 790. doi: 10.1021/acscentsci.6b00260
doi: 10.1021/acscentsci.6b00260
Yu, X.; Li, Z.; Wu, X.; Zhang, H.; Zhao, Q.; Liang, H.; Wang, H.; Chao, D.; Wang, F.; Qiao, Y.; et al. Joule 2023, 7, 1145. doi: 10.1016/j.joule.2023.05.004
doi: 10.1016/j.joule.2023.05.004
Zhu, M.; Li, S.; Li, B.; Gong, Y.; Du, Z.; Yang, S. Sci. Adv. 2019, 5, eaau6264. doi: 10.1126/sciadv.aau6264
doi: 10.1126/sciadv.aau6264
Luo, F.; Xu, D.; Liao, Y.; Chen, M.; Li, S.; Wang, D.; Zheng, Z. J. Energy Chem. 2023, 77, 11. doi: 10.1016/j.jechem.2022.10.023
doi: 10.1016/j.jechem.2022.10.023
Xu, Z.; Zhang, Z.; Li, X.; Dong, Q.; Qian, Y.; Hou, Z. ACS Appl. Mater. Interfaces 2023, 15, 15574. doi: 10.1021/acsami.3c00747
doi: 10.1021/acsami.3c00747
Ballesteros, J. C.; Díaz-Arista, P.; Meas, Y.; Ortega, R.; Trejo, G. Electrochim. Acta 2007, 52, 3686. doi: 10.1016/j.electacta.2006.10.042
doi: 10.1016/j.electacta.2006.10.042
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
Fan Yang , Zheng Liu , Da Wang , KwunNam Hui , Yelong Zhang , Zhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026