Citation: Jiandong Liu, Zhijia Zhang, Kamenskii Mikhail, Volkov Filipp, Eliseeva Svetlana, Jianmin Ma. Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 230804. doi: 10.3866/PKU.WHXB202308048 shu

Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries

  • Corresponding author: Jianmin Ma, 
  • Received Date: 30 August 2023
    Revised Date: 6 October 2023
    Accepted Date: 30 October 2023

    Fund Project: the National Natural Science Foundation of China U21A20311

  • Achieving high energy density batteries is currently a key focus in the field of energy storage. Lithium batteries, due to their high energy density, have garnered significant attention in research. Increasing the upper limit of the battery's cut-off voltage can boost the energy density of lithium batteries. However, high-voltage conditions can lead to irreversible phase transitions and side reactions in cathode materials, which can degrade battery performance and even result in safety risks, including explosions. The electrolyte can also decompose, causing capacity loss and releasing flammable gases when subjected to high voltage, which can lead to battery swelling and potential combustion and explosions. Designing an ideal cathode electrolyte interphase (CEI) on the cathode's surface to regulate the electrode-electrolyte interface reaction can effectively enhance the cycling stability of the battery, reduce irreversible phase transitions in the cathode, and improve the oxidation stability of the electrolyte. The ideal CEI should possess high ion conductivity, high thermal stability, and should minimize interface side reactions to ensure optimal battery performance. Understanding the formation and development of CEI is crucial for enhancing battery performance under high voltage. Apart from creating artificial CEI, modifying electrolytes has gained significant attention. By altering the electrolyte recipe, an ideal CEI can be achieved. Electrolyte engineering is considered an effective strategy for attaining an ideal CEI and enhancing the stability of high nickel positive electrodes. This approach is simple, cost-effective, and holds great promise for achieving higher energy density in lithium batteries. To provide a better understanding of CEI in lithium ion batteries (LIBs), this article reviews the latest advancements in CEI, including the formation mechanism of CEI, the key factors influencing CEI, methods for modifying CEI, and techniques for characterizing CEI. Additionally, it summarizes the current status of artificial CEI development and in situ CEI generation through electrolyte design. The aim is to offer fundamental guidance for future research and the design of high-voltage battery CEI. Finally, the article outlines the opportunities and challenges in electrolyte engineering for modified CEI, pointing towards the future direction of constructing an ideal CEI.
  • 加载中
    1. [1]

      Goodenough J. B., Park K. -S. J. Am. Chem. Soc, 2013, 135, 1167 doi: 10.1021/ja3091438  doi: 10.1021/ja3091438

    2. [2]

      Jia H., Xu W. Trends Chem, 2022, 4, 627 doi: 10.1016/j.trechm.2022.04.010  doi: 10.1016/j.trechm.2022.04.010

    3. [3]

      Wu Y., Liu X., Wang L., Feng X., Ren D., Li Y., Rui X., Wang Y., Han X. Xu G. -L., et al. Energy Storage Mater, 2021, 37, 77 doi: 10.1016/j.ensm.2021.02.001  doi: 10.1016/j.ensm.2021.02.001

    4. [4]

      Pham H. Q., Chung G. J., Han J., Hwang E. -H., Kwon Y. -G., Song S. -W. J. Chem. Phys, 2020, 152, 094709 doi: 10.1063/1.5144280  doi: 10.1063/1.5144280

    5. [5]

      Zhang J. Wang P. -F., Bai P., Wan H., Liu S., Hou S., Pu X., Xia J., Zhang W., Wang Z., et al. Adv. Mater, 2022, 34, 2108353 doi: 10.1002/adma.202108353  doi: 10.1002/adma.202108353

    6. [6]

      Li W., Song B., Manthiram A. Chem. Soc. Rev, 2017, 46, 3006 doi: 10.1039/C6CS00875E  doi: 10.1039/C6CS00875E

    7. [7]

      Kong D., Hu J., Chen Z., Song K., Li C., Weng M., Li M., Wang R., Liu T., Liu J., et al. Adv. Energy Mater, 2019, 9, 1901756 doi: 10.1002/aenm.201901756  doi: 10.1002/aenm.201901756

    8. [8]

      Ren X., Chen S., Lee H., Mei D., Engelhard M. H., Burton S. D., Zhao W., Zheng J., Li Q. Ding M. S., et al. Chem, 2018, 4, 1877 doi: 10.1016/j.chempr.2018.05.002  doi: 10.1016/j.chempr.2018.05.002

    9. [9]

      Song S. H., Cho M., Park I., Yoo J. -G., Ko K. -T., Hong J., Kim J. Jung S. -K., Avdeev M., Ji S., et al. Adv. Energy Mater, 2020, 10, 2000521 doi: 10.1002/aenm.202000521  doi: 10.1002/aenm.202000521

    10. [10]

      Piao Z., Gao R., Liu Y., Zhou G., Cheng H. -M. Adv. Mater., 2023, 35, 2206009 doi: 10.1002/adma.202206009  doi: 10.1002/adma.202206009

    11. [11]

      Qin Y., Cheng H., Zhou J., Liu M., Ding X., Li Y., Huang Y., Chen Z., Shen C., Wang D., et al. Energy Storage Mater, 2023, 57, 411 doi: 10.1016/j.ensm.2023.02.022  doi: 10.1016/j.ensm.2023.02.022

    12. [12]

      Sun H. H., Kim U. -H., Park J. -H., Park S. -W., Seo D. -H., Heller A., Mullins C. B., Yoon C. S., Sun Y. -K. Nat. Commun, 2021, 12, 6552 doi: 10.1038/s41467-021-26815-6  doi: 10.1038/s41467-021-26815-6

    13. [13]

      Zhou K., Xie Q., Li B., Manthiram A. Energy Storage Mater, 2021, 34, 229 doi: 10.1016/j.ensm.2020.09.015  doi: 10.1016/j.ensm.2020.09.015

    14. [14]

      Li J., Li W., Wang S., Jarvis K., Yang J., Manthiram A. Chem. Mater, 2018, 30, 3101 doi: 10.1021/acs.chemmater.8b01077  doi: 10.1021/acs.chemmater.8b01077

    15. [15]

      Xie Q., Li W., Dolocan A., Manthiram A. Chem. Mater, 2019, 31, 8886 doi: 10.1021/acs.chemmater.9b02916  doi: 10.1021/acs.chemmater.9b02916

    16. [16]

      Nisar U., Muralidharan N., Essehli R., Amin R., Belharouak I. Energy Storage Mater, 2021, 38, 309 doi: 10.1016/j.ensm.2021.03.015  doi: 10.1016/j.ensm.2021.03.015

    17. [17]

      Woo S. U., Yoon C. S., Amine K., Belharouak I., Sun Y. K. J. Electrochem. Soc, 2007, 154, A1005 doi: 10.1149/1.2776160  doi: 10.1149/1.2776160

    18. [18]

      Ahmed B., Xia C., Alshareef H. N. Nano Today, 2016, 11, 250 doi: 10.1016/j.nantod.2016.04.004  doi: 10.1016/j.nantod.2016.04.004

    19. [19]

      Li W., Liu X., Celio H., Smith P., Dolocan A., Chi M., Manthiram A. Adv. Energy Mater, 2018, 8, 1703154 doi: 10.1002/aenm.201703154  doi: 10.1002/aenm.201703154

    20. [20]

      You Y., Celio H., Li J., Dolocan A., Manthiram A. Angew. Chem. Int. Ed, 2018, 57, 6480 doi: 10.1002/anie.201801533  doi: 10.1002/anie.201801533

    21. [21]

      Gao S., Zhan X., Cheng Y. -T. J. Power Sources, 2019, 410-411, 45. doi: 10.1016/j.jpowsour.2018.10.094  doi: 10.1016/j.jpowsour.2018.10.094

    22. [22]

      Shu Y., Xie Y., Yan W., Meng S., Sun D., Jin Y., Xiang L. Ceramics Int, 2020, 46, 14840 doi: 10.1016/j.ceramint.2020.03.009  doi: 10.1016/j.ceramint

    23. [23]

      Mou J., Deng Y., He L., Zheng Q., Jiang N., Lin D. Electrochim. Acta, 2018, 260, 101 doi: 10.1016/j.electacta.2017.11.059  doi: 10.1016/j.electacta

    24. [24]

      Cao G., Jin Z., Zhu J., Li Y., Xu B., Xiong Y., Yang J. J. Alloys Compd, 2020, 832, 153788 doi: 10.1016/j.jallcom.2020.153788  doi: 10.1016/j.jallcom

    25. [25]

      Zhang Z., Yang J., Huang W., Wang H., Zhou W., Li Y., Li Y., Xu J., Huang W., Chiu W., et al. Matter, 2021, 4, 302 doi: 10.1016/j.matt.2020.10.021  doi: 10.1016/j.matt.2020.10.021

    26. [26]

      Chen D., Mahmoud M. A., Wang J. -H., Waller G. H., Zhao B., Qu C., El-Sayed M. A., Liu M. Nano Lett, 2019, 19, 2037 doi: 10.1021/acs.nanolett.9b00179  doi: 10.1021/acs.nanolett.9b00179

    27. [27]

      Wang S., Dai A., Cao Y., Yang H., Khalil A., Lu J., Li H., Ai X. J. Mater. Chem. A, 2021, 9, 11623 doi: 10.1039/D1TA02563E  doi: 10.1039/D1TA02563E

    28. [28]

      Thomas M. G. S. R., Bruce P. G., Goodenough J. B. J. Electrochem. Soc, 1985, 132, 1521 doi: 10.1149/1.2114158  doi: 10.1149/1.2114158

    29. [29]

      Kanamura K., Toriyama S., Shiraishi S., Ohashi M., Takehara Z. -I. J. Electroanal. Chem, 1996, 419, 77 doi: 10.1016/S0022-0728(96)04862-0  doi: 10.1016/S0022-0728(96)04862-0

    30. [30]

      Zhou Q., Ma J., Dong S., Li X., Cui G. Adv. Mater, 2019, 31, 1902029 doi: 10.1002/adma.201902029  doi: 10.1002/adma.201902029

    31. [31]

      Aikens D. A. J. Chem. Edu, 1983, 60, A25 doi: 10.1021/ed060pA25.1  doi: 10.1021/ed060pA25.1

    32. [32]

      Fang S., Jackson D., Dreibelbis M. L., Kuech T. F., Hamers R. J. J. Power Sources, 2018, 373, 184 doi: 10.1016/j.jpowsour.2017.09.050  doi: 10.1016/j.jpowsour.2017.09.050

    33. [33]

      Zhang J. -N., Li Q., Wang Y., Zheng J., Yu X., Li H. Energy Storage Mater, 2018, 14, 1 doi: 10.1016/j.ensm.2018.02.016  doi: 10.1016/j.ensm.2018.02.016

    34. [34]

      Zhang Z., Qin C., Wang K., Han X., Li J., Sui M., Yan P. J. Energy Chem, 2023, 81, 192 doi: 10.1016/j.jechem.2023.01.046  doi: 10.1016/j.jechem.2023.01.046

    35. [35]

      Zhou Y. -N., Ma J., Hu E., Yu X., Gu L., Nam K. -W., Chen L., Wang Z., Yang X. -Q. Nat. Commun, 2014, 5, 5381 doi: 10.1038/ncomms6381  doi: 10.1038/ncomms6381

    36. [36]

      Chen M., Wang W., Shi Z., Liu Z., Shen C. Appl. Surf. Sci, 2022, 600, 154119 doi: 10.1016/j.apsusc.2022.154119  doi: 10.1016/j.apsusc.2022.154119

    37. [37]

      Tallman K. R., Wheeler G. P., Kern C. J., Stavitski E., Tong X., Takeuchi K. J., Marschilok A. C., Bock D. C., Takeuchi E. S. J. Phys. Chem. C, 2021, 125, 58 doi: 10.1021/acs.jpcc.0c08095  doi: 10.1021/acs.jpcc.0c08095

    38. [38]

      Yang Y., Wang H., Zhu C., Ma J. Angew. Chem. Int. Ed, 2023, 62, e202300057 doi: 10.1002/anie.202300057  doi: 10.1002/anie.202300057

    39. [39]

      Liu J., Wu M., Li X., Wu D., Wang H., Huang J., Ma J. Adv. Energy Mater, 2023, 13, 2300084 doi: 10.1002/aenm.202300084  doi: 10.1002/aenm.202300084

    40. [40]

      Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V. Petersson G. A., Nakatsuji H., et al. Gaussian 16 Rev. B.01, Wallingford, CT, 2016.

    41. [41]

      Neese F. WIREs Comput. Mol. Sci, 2018, 8, e1327 doi: 10.1002/wcms.1327  doi: 10.1002/wcms.1327

    42. [42]

      Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett, 1996, 77, 3865 doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    43. [43]

      Hutter J., Iannuzzi M., Schiffmann F., VandeVondele J. WIREs Comput. Mol. Sci, 2014, 4, 15 doi: 10.1002/wcms.1159  doi: 10.1002/wcms.1159

    44. [44]

      Fan X., Chen L., Borodin O., Ji X., Chen J., Hou S., Deng T., Zheng J., Yang C. Liou S. -C., et al. Nat. Nanotechnol, 2018, 13, 715 doi: 10.1038/s41565-018-0183-2  doi: 10.1038/s41565-018-0183-2

    45. [45]

      Li X., Liu J., He J., Wang H., Qi S., Wu D., Huang J., Li F., Hu W., Ma J. Adv. Funct. Mater, 2021, 31, 2104395 doi: 10.1002/adfm.202104395  doi: 10.1002/adfm.202104395

    46. [46]

      Kim S. C., Oyakhire S. T., Athanitis C., Wang J., Zhang Z., Zhang W., Boyle D. T. Kim M. S., Yu Z., Gao X., et al. Proc. Natl. Acad. Sci, 2023, 120, e2214357120 doi: 10.1073/pnas.2214357120  doi: 10.1073/pnas.2214357120

    47. [47]

      Zhao L., Chen G., Weng Y., Yan T., Shi L., An Z., Zhang D. Chem. Eng. J, 2020, 401, 126138 doi: 10.1016/j.cej.2020.126138  doi: 10.1016/j.cej.2020.126138

    48. [48]

      Qiao Y., Zhou Z., Chen Z., Du S., Cheng Q., Zhai H., Fritz N. J., Du Q., Yang Y. Nano Energy, 2018, 45, 68 doi: 10.1016/j.nanoen.2017.12.036  doi: 10.1016/j.nanoen.2017.12.036

    49. [49]

      Wu Z., Li R., Zhang S., lv L., Deng T., Zhang H., Zhang R., Liu J., Ding S., Fan L., et al. Chem, 2023, 9, 650 doi: 10.1016/j.chempr.2022.10.027  doi: 10.1016/j.chempr.2022.10.027

    50. [50]

      Li X., Zhang K., Mitlin D., Paek E., Wang M., Jiang F., Huang Y., Yang Z., Gong Y., Gu L., et al. Small, 2018, 14, 1802570 doi: 10.1002/smll.201802570  doi: 10.1002/smll.201802570

    51. [51]

      Bai Y., Jiang K., Sun S., Wu Q., Lu X., Wan N. Electrochim. Acta, 2014, 134, 347 doi: 10.1016/j.electacta.2014.04.155  doi: 10.1016/j.electacta.2014.04.155

    52. [52]

      Yao L., Liang F., Jin J., Chowdari B. V. R., Yang J., Wen Z. Chem. Eng. J, 2020, 389, 124403 doi: 10.1016/j.cej.2020.124403  doi: 10.1016/j.cej.2020.124403

    53. [53]

      Gao X. -W., Deng Y. -F., Wexler D., Chen G. -H., Chou S. -L., Liu H. -K., Shi Z. -C., Wang J. -Z. J. Mater. Chem. A, 2015, 3, 404 doi: 10.1039/C4TA04018J  doi: 10.1039/C4TA04018J

    54. [54]

      Ding J. -F., Xu R., Yao N., Chen X., Xiao Y., Yao Y. -X., Yan C., Xie J., Huang J. -Q. Angew. Chem. Int. Ed, 2021, 60, 11442 doi: 10.1002/anie.202101627  doi: 10.1002/anie.202101627

    55. [55]

      Wang Z., Zhu C., Liu J., Hu X., Yang Y., Qi S., Wang H., Wu D., Huang J., He P., et al. Adv. Funct. Mater, 2023, 33, 2212150 doi: 10.1002/adfm.202212150  doi: 10.1002/adfm.202212150

    56. [56]

      Huang J., Liu J., He J., Wu M., Qi S., Wang H., Li F., Ma J. Angew. Chem. Int. Ed, 2021, 60, 20717 doi: 10.1002/anie.202107957  doi: 10.1002/anie.202107957

    57. [57]

      Jiang G., Liu J., Wang Z., Ma J. Adv. Funct. Mater, 2023, 2300629. doi: 10.1002/adfm.202300629  doi: 10.1002/adfm.202300629

    58. [58]

      Rath P. C., Wang Y. -W., Patra J., Umesh B., Yeh T. -J., Okada S., Li J., Chang J. -K. Chem. Eng. J, 2021, 415, 128904 doi: 10.1016/j.cej.2021.128904  doi: 10.1016/j.cej.2021.128904

    59. [59]

      Zheng X., Liao Y., Zhang Z., Zhu J., Ren F., He H., Xiang Y., Zheng Y., Yang Y. J. Energy Chem, 2020, 42, 62 doi: 10.1016/j.jechem.2019.05.023  doi: 10.1016/j.jechem.2019.05.023

    60. [60]

      Etacheri V., Haik O., Goffer Y., Roberts G. A., Stefan I. C., Fasching R., Aurbach D. Langmuir, 2012, 28, 965 doi: 10.1021/la203712s  doi: 10.1021/la203712s

    61. [61]

      Xia J., Petibon R., Xiao A., Lamanna W. M., Dahn J. R. J. Electrochem. Soc, 2016, 163, A1637 doi: 10.1149/2.0831608jes  doi: 10.1149/2.0831608jes

    62. [62]

      Fan X., Wang C. Chem. Soc. Rev, 2021, 50, 10486 doi: 10.1039/D1CS00450F  doi: 10.1039/D1CS00450F

    63. [63]

      Xu N., Shi J., Liu G., Yang X., Zheng J., Zhang Z., Yang Y. J. Power Sources Adv, 2021, 7, 100043 doi: 10.1016/j.powera.2020.100043  doi: 10.1016/j.powera.2020.100043

    64. [64]

      Wang T., Rao L., Jiao X., Choi J., Yap J., Kim J. -H. ACS Appl. Energy Mater, 2022, 5, 7346 doi: 10.1021/acsaem.2c00861  doi: 10.1021/acsaem.2c00861

    65. [65]

      Song Y., Mao Q., Li Q., Huang Z., Wan Y., Hong B., Zhong Q. ACS Appl. Energy Mater, 2023, 6, 4271 doi: 10.1021/acsaem.3c00196  doi: 10.1021/acsaem.3c00196

    66. [66]

      Wu F., Schür A. R. Kim G. -T., Dong X., Kuenzel M., Diemant T., D'Orsi G., Simonetti E., De Francesco M., Bellusci M., et al. Energy Storage Mater, 2021, 42, 826 doi: 10.1016/j.ensm.2021.08.030  doi: 10.1016/j.ensm.2021.08.030

    67. [67]

      Xu M., Liu Y., Li B., Li W., Li X., Hu S. Electrochem. Commun, 2012, 18, 123 doi: 10.1016/j.elecom.2012.02.037  doi: 10.1016/j.elecom.2012.02.037

    68. [68]

      Pham T. D., Faheem A. B., Kim J., Kwak K., Lee K. -K. Electrochim. Acta, 2023, 142496. doi: 10.1016/j.electacta.2023.142496  doi: 10.1016/j.electacta.2023.142496

    69. [69]

      Winter E., Briccola M., Schmidt T. J., Trabesinger S. Appl. Res, 2022, e202200096. doi: 10.1002/appl.202200096  doi: 10.1002/appl.202200096

    70. [70]

      Ma Q., Zhang X., Wang A., Xia Y., Liu X., Luo J. Adv. Funct. Mater, 2020, 30, 2002824 doi: 10.1002/adfm.202002824  doi: 10.1002/adfm.202002824

    71. [71]

      Yang Y. -P., Jiang J. -C., Huang A. -C., Tang Y., Liu Y. -C., Xie L. -J., Zhang C. -Z., Wu Z. -H., Xing Z. -X., Yu F. Process Saf. Environ. Prot, 2022, 160, 80 doi: 10.1016/j.psep.2022.02.018  doi: 10.1016/j.psep.2022.02.018

    72. [72]

      Zhang C. -M., Li F., Zhu X. -Q., Yu J. -G. Molecules, 2022, 27, 3107; doi: 103390/molecules27103107  doi: 10.3390/molecules.27103107

    73. [73]

      Li Y., Li W., Shimizu R., Cheng D., Nguyen H., Paulsen J., Kumakura S., Zhang M., Meng Y. S. Adv. Energy Mater, 2022, 12, 2103033 doi: 10.1002/aenm.202103033  doi: 10.1002/aenm.202103033

    74. [74]

      Martinez A. C., Rigaud S., Grugeon S., Tran-Van P., Armand M., Cailleu D., Pilard S., Laruelle S. Electrochim. Acta, 2022, 426, 140765 doi: 10.1016/j.electacta.2022.140765  doi: 10.1016/j.electacta.2022.140765

    75. [75]

      Fu A., Lin J., Zhang Z., Xu C., Zou Y., Liu C., Yan P., Wu D. -Y., Yang Y., Zheng J. ACS Energy Lett, 2022, 7, 1364 doi: 10.1021/acsenergylett.2c00316  doi: 10.1021/acsenergylett.2c00316

    76. [76]

      Xu M., Zhou L., Dong Y., Chen Y., Garsuch A., Lucht B. L. J. Electrochem. Soc, 2013, 160, A2005 doi: 10.1149/2.053311jes  doi: 10.1149/2.053311jes

    77. [77]

      Xu M., Zhou L., Dong Y., Chen Y., Demeaux J., MacIntosh A. D., Garsuch A., Lucht B. L. Energy Environ. Sci, 2016, 9, 1308 doi: 10.1039/C5EE03360H  doi: 10.1039/C5EE03360H

    78. [78]

      Yang X., Lin M., Zheng G., Wu J., Wang X., Ren F., Zhang W., Liao Y., Zhao W., Zhang Z., et al. Adv. Funct. Mater, 2020, 30, 2004664 doi: 10.1002/adfm.202004664  doi: 10.1002/adfm.202004664

    79. [79]

      Liu F., Zhang Z., Yu Z., Fan X., Yi M., Bai M., Song Y., Mao Q., Hong B., Zhang Z., et al. Chem. Eng. J, 2022, 434, 134745 doi: 10.1016/j.cej.2022.134745  doi: 10.1016/j.cej.2022.134745

    80. [80]

      Zhang Q. -K., Zhang X. -Q., Wan J., Yao N., Song T. -L., Xie J., Hou L. -P., Zhou M. -Y., Chen X. Li B. -Q., et al. Nat. Energy, 2023, 8, 725 doi: 10.1038/s41560-023-01275-y  doi: 10.1038/s41560-023-01275-y

  • 加载中
    1. [1]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    2. [2]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    3. [3]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    8. [8]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    9. [9]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    10. [10]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    11. [11]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    12. [12]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    13. [13]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    14. [14]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    15. [15]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    16. [16]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    19. [19]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    20. [20]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

Metrics
  • PDF Downloads(5)
  • Abstract views(174)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return