Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity
- Corresponding author: Xue Yong, x.yong@sheffield.ac.uk Siyu Lu, sylu2013@zzu.edu.cn
Citation:
Jingkun Yu, Xue Yong, Ang Cao, Siyu Lu. Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity[J]. Acta Physico-Chimica Sinica,
;2024, 40(6): 230701.
doi:
10.3866/PKU.WHXB202307015
Kim, H. E.; Kim, J.; Ra, E. C.; Zhang, H.; Jang, Y. J.; Lee, J. S. Angew. Chem. Int. Ed. 2022, 61, e202204117. doi: 10.1002/anie.202204117z
doi: 10.1002/anie.202204117z
Chen, F.-Y.; Wu, Z.-Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M.; et al. Nat. Nanotechnol. 2022, 17, 759. doi: 10.1038/s41565-022-01121-4
doi: 10.1038/s41565-022-01121-4
Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. Nano Res. Energy 2022, 1, e9120010. doi: 10.26599/NRE.2022.9120010
doi: 10.26599/NRE.2022.9120010
Song, W.; Yue, L.; Fan, X.; Luo, Y.; Ying, B.; Sun, S.; Zheng, D.; Liu, Q.; Hamdy, M. S.; Sun, X. Inorg. Chem. Front. 2023, 10, 3489. doi: 10.1039/D3QI00554B
doi: 10.1039/D3QI00554B
Li, Z.; Liang, J.; Liu, Q.; Xie, L.; Zhang, L.; Ren, Y.; Yue, L.; Li, N.; Tang, B.; Alshehri, A. A.; et al. Mater. Today Phys. 2022, 23, 100619. doi: 10.1016/j.mtphys.2022.100619
doi: 10.1016/j.mtphys.2022.100619
Liu, Q.; Xie, L.; Liang, J.; Ren, Y.; Wan, G.; Zhang, Y. L.; Yue, L.; Li, T.; Luo, Y.; Li, N.; et al. Small 2022, 18, 2106961. doi: 10.1002/smll.202106961
doi: 10.1002/smll.202106961
Xu, X.; Hu, L.; Li, Z.; Xie, L.; Sun, S.; Zhang, L.; Li, J.; Luo, Y.; Yan, X.; Hamdy, et al. Sustain. Energy Fuels 2022, 6, 4130. doi: 10.1039/D2SE00830K
doi: 10.1039/D2SE00830K
Zhao, D.; Ma, C.; Li, J.; Li, R.; Fan, X.; Zhang, L.; Dong, K.; Luo, Y.; Zheng, D.; Sun, S.; et al. Inorg. Chem. Front. 2022, 9, 6412. doi: 10.1039/D2QI01791A
doi: 10.1039/D2QI01791A
Lu, X.; Yu, J.; Cai, J.; Zhang, Q.; Yang, S.; Gu, L.; Waterhouse, G. I. N.; Zang, S.-Q.; Yang, B.; Lu, S. Cell Rep. Phys. Sci. 2022, 3, 100961. doi: 10.1016/j.xcrp.2022.100961
doi: 10.1016/j.xcrp.2022.100961
Cai, J.; Huang, J.; Cao, A.; Wei, Y.; Wang, H.; Li, X.; Jiang, Z.; Waterhouse, G. I. N.; Lu, S.; Zang, S.-Q. Appl. Catal. B Environ. 2023, 328, 122473. doi: 10.1016/j.apcatb.2023.122473
doi: 10.1016/j.apcatb.2023.122473
Lin, L.; Li, H.; Wang, Y.; Li, H.; Wei, P.; Nan, B.; Si, R.; Wang, G.; Bao, X. Angew. Chem. Int. Ed. 2021, 60, 26582. doi: 10.1002/ange.202113135
doi: 10.1002/ange.202113135
Wu, M.; Zhang, Y.; Fu, Z.; Lyu, Z.; Li, Q.; Wang, J. Acta Phys.-Chim. Sin. 2023, 39, 2207007.
doi: 10.3866/PKU.WHXB202207007
Shen, T.; Huang, X.; Xi, S.; Li, W.; Sun, S.; Hou, Y. J. Energy Chem. 2022, 68, 184. doi: 10.1016/j.jechem.2021.10.027
doi: 10.1016/j.jechem.2021.10.027
Lv, X.; Wei, W.; Zhao, P.; Er, D.; Huang, B.; Dai, Y.; Jacob, T. J. Catal. 2019, 378, 97. doi: 10.1016/j.jcat.2019.08.019
doi: 10.1016/j.jcat.2019.08.019
Luo, Y.; Wang, D. Acta Phys.-Chim. Sin. 2023, 39, 2212020.
doi: 10.3866/PKU.WHXB202212020
Giulimondi, V.; Mitchell, S.; Pérez-Ramírez, J. ACS Catal. 2023, 13, 2981. doi: 10.1021/acscatal.2c05992
doi: 10.1021/acscatal.2c05992
Hung, S. F.; Xu, A.; Wang, X.; Li, F.; Hsu, S. H.; Li, Y.; Wicks, J.; Cervantes, E. G.; Rasouli, A. S.; Li, Y. C.; et al. Nat. Commun. 2022, 13, 819. doi: 10.1038/s41467-022-28456-9
doi: 10.1038/s41467-022-28456-9
Wang, Y.; Liang, Y.; Bo, T.; Meng, S.; Liu, M. J. Phys. Chem. Lett. 2022, 13, 5969. doi: 10.1021/acs.jpclett.2c01381
doi: 10.1021/acs.jpclett.2c01381
Li, X.; Chen, T.; Yang, B.; Xiang, Z. Angew. Chem. Int. Ed. 2023, 62, e202215441. doi: 10.1002/ange.202215441
doi: 10.1002/ange.202215441
Bai, L.; Hsu, C.-S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. Nat. Energy 2021, 6, 1054. doi: 10.1038/s41560-021-00925-3
doi: 10.1038/s41560-021-00925-3
Zhang, Y. X.; Zhang, S.; Huang, H.; Liu, X.; Li, B.; Lee, Y.; Wang, X.; Bai, Y.; Sun, M.; Wu, Y.; et al. J. Am. Chem. Soc. 2023, 145, 4819. doi: 10.1021/jacs.2c13886
doi: 10.1021/jacs.2c13886
Hu, R.; Li, Y.; Wang, F.; Shang, J. Nanoscale 2020, 12, 20413. doi: 10.1039/D0NR05202G
doi: 10.1039/D0NR05202G
Wu, X.; Wang, Q.; Yang, S.; Zhang, J.; Cheng, Y.; Tang, H.; Ma, L.; Min, X.; Tang, C.; Jiang, S. P.; et al. Energy Environ. Sci. 2022, 15, 1183. doi: 10.1039/D1EE03311E
doi: 10.1039/D1EE03311E
Lv, X. S.; Mou, T.; Li, J. W.; Kou, L. Z.; Frauenheim, T. Adv. Funct. Mater. 2022, 32, 2201262. doi: 10.1002/adfm.202201262
doi: 10.1002/adfm.202201262
Zhang, K.; Xu, J.; Yan, T.; Jia, L.; Zhang, J.; Shao, C.; Zhang, L.; Han, N.; Li, Y. Adv. Funct. Mater. 2023, 33, 2214062. doi: 10.1002/adfm.202214062
doi: 10.1002/adfm.202214062
Wang, T.; Zhou, L.; Xia, S.; Yu, L. J. Phys. Chem. C 2023, 127, 2963. doi: 10.1021/acs.jpcc.2c08319
doi: 10.1021/acs.jpcc.2c08319
Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
doi: 10.1016/0927-0256(96)00008-0
Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. doi: 10.1103/PhysRevB.47.558
doi: 10.1103/PhysRevB.47.558
Hammer, B.; Hansen, L. B.; Nørskov, J. K. Phys. Rev. B 1999, 59, 7413. doi: 10.1103/PhysRevB.59.7413
doi: 10.1103/PhysRevB.59.7413
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1993, 48, 4978. doi: 10.1103/PhysRevB.48.4978.2
doi: 10.1103/PhysRevB.48.4978.2
Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
doi: 10.1103/PhysRevB.50.17953
Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495
doi: 10.1002/jcc.20495
Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
doi: 10.1103/PhysRevB.13.5188
Tang, W.; Sanville, E.; Henkelman, G. J. Phys. Condens. Matter 2009, 21, 084204. doi: 10.1088/0953-8984/21/8/084204
doi: 10.1088/0953-8984/21/8/084204
Nosé, S. J. Chem. Phys. 1984, 81, 511. doi: 10.1063/1.447334
doi: 10.1063/1.447334
Nelson, R.; Ertural, C.; George, J.; Deringer, V. L.; Hautier, G.; Dronskowski, R. J. Comput. Chem. 2020, 41, 1931. doi: 10.1002/jcc.26353
doi: 10.1002/jcc.26353
Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. Comput. Phys. Commun. 2021, 267, 108033. doi: 10.1016/j.cpc.2021.108033
doi: 10.1016/j.cpc.2021.108033
Chen, Z. W.; Chen, L. X.; Jiang, M.; Chen, D.; Wang, Z. L.; Yao, X.; Singh, C. V.; Jiang, Q. J. Mater. Chem. A 2020, 8, 15086. doi: 10.1039/D0TA04919K
doi: 10.1039/D0TA04919K
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j
doi: 10.1021/jp047349j
Niu, H.; Zhang, Z.; Wang, X.; Wan, X.; Shao, C.; Guo, Y. Adv. Funct. Mater. 2020, 31, 2008533. doi: 10.1002/adfm.202008533
doi: 10.1002/adfm.202008533
Hammer, B.; Nørskov, J. K. Adv. Catal. 2000, 45, 71. doi: 10.1016/S0360-0564(02)45013-4
doi: 10.1016/S0360-0564(02)45013-4
Wang, M.; Torbensen, K.; Salvatore, D.; Ren, S.; Joulie, D.; Dumoulin, F.; Mendoza, D.; Lassalle-Kaiser, B.; Isci, U.; Berlinguette, C. P.; et al. Nat. Commun. 2019, 10, 3602. doi: 10.1038/s41467-019-11542-w
doi: 10.1038/s41467-019-11542-w
Zhu, M.; Ye, R.; Jin, K.; Lazouski, N.; Manthiram, K. ACS Energy Lett. 2018, 3, 1381. doi: 10.1021/acsenergylett.8b00519
doi: 10.1021/acsenergylett.8b00519
Han, A.; Wang, B.; Kumar, A.; Qin, Y.; Jin, J.; Wang, X.; Yang, C.; Dong, B.; Jia, Y.; Liu, J.; Sun, X. Small Methods 2019, 3, 1800471. doi: 10.1002/smtd.201800471
doi: 10.1002/smtd.201800471
Li, J.; Zhang, L.; Doyle-Davis, K.; Li, R.; Sun, X. Carbon Energy 2020, 2, 488. doi: 10.1002/cey2.74
doi: 10.1002/cey2.74
Lv, L.; Shen, Y.; Liu, J.; Meng, X.; Gao, X.; Zhou, M.; Zhang, Y.; Gong, D.; Zheng, Y.; Zhou, Z. J. Phys. Chem. Lett. 2021, 12, 11143. doi: 10.1021/acs.jpclett.1c03005
doi: 10.1021/acs.jpclett.1c03005
Yang, M.; Wang, Z.; Jiao, D.; Li, G.; Cai, Q.; Zhao, J. Appl. Surf. Sci. 2022, 592, 153213. doi: 10.1016/j.apsusc.2022.153213
doi: 10.1016/j.apsusc.2022.153213
Wang, Y.; Xu, A.; Wang, Z.; Huang, L.; Li, J.; Li, F.; Wicks, J.; Luo, M.; Nam, D. H.; Tan, C. S.; et al. J. Am. Chem. Soc. 2020, 142, 5702. doi: 10.1021/jacs.9b13347
doi: 10.1021/jacs.9b13347
Hu, T.; Wang, C.; Wang, M.; Li, C. M.; Guo, C. ACS Catal. 2021, 11, 14417. doi: 10.1021/acscatal.1c03666
doi: 10.1021/acscatal.1c03666
Hu, T.; Wang, M.; Guo, C.; Li, C. M. J. Mater. Chem. A 2022, 10, 8923. doi: 10.1039/D2TA00470D
doi: 10.1039/D2TA00470D
Niu, H.; Wang, X.; Shao, C.; Liu, Y.; Zhang, Z.; Guo, Y. J. Mater. Chem. A 2020, 8, 6555. doi: 10.1039/D0TA00794C
doi: 10.1039/D0TA00794C
Sathishkumar, N.; Wu, S.; Chen, H. App. Surf. Sci. 2022, 598, 153829. doi: 10.1016/j.apsusc.2022.153829
doi: 10.1016/j.apsusc.2022.153829
Liu, J.-X.; Richards, D.; Singh, N.; Goldsmith, B. R. ACS Catal. 2019, 9, 7052. doi: 10.1021/acscatal.9b02179
doi: 10.1021/acscatal.9b02179
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Xianfei Chen , Wentao Zhang , Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
Xiaofang Li , Zhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029