Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery
- Corresponding author: Jianmin Ma, nanoelechem@hnu.edu.cn
Citation:
Jiandong Liu, Xin Li, Daxiong Wu, Huaping Wang, Junda Huang, Jianmin Ma. Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery[J]. Acta Physico-Chimica Sinica,
;2024, 40(6): 230603.
doi:
10.3866/PKU.WHXB202306039
Huang, J.-D.; Zhu, Y.-H.; Feng, Y.; Han, Y.-H.; Gu, Z.-Y., Liu, R.-X.; Yang, D. Y.; Chen, K.; Zhang, X. Y.; Sun, W.; et al. Acta Phys.-Chim. Sin. 2022, 38, 2208008.
doi: 10.3866/PKU.WHXB202208008
Shi, P.; Liu, Z.-Y.; Zhang, X.-Q.; Chen, X.; Yao, N.; Xie, J.; Jin, C.-B.; Zhan, Y.-X.; Ye, G.; Huang, J.-Q.; et al. J. Energy Chem. 2022, 64, 172. doi: 10.1016/j.jechem.2021.04.045
doi: 10.1016/j.jechem.2021.04.045
Li, X.; Liu, J.; He, J.; Wang, H.; Qi, S.; Wu, D.; Huang, J.; Li, F.; Hu, W.; Ma, J. Adv. Funct. Mater. 2021, 31, 2104395. doi: 10.1002/adfm.202104395
doi: 10.1002/adfm.202104395
Li, D.; Luo, L.; Zhu, J.; Qin, H.; Liu, P.; Sun, Z.; Lei, Y.; Jiang, M. Chin. Chem. Lett. 2022, 33, 1025. doi: 10.1016/j.cclet.2021.07.021
doi: 10.1016/j.cclet.2021.07.021
Wu, N.; Zhang, Q.-Y.; Guo, Y.-J.; Zhou, L.; Zhang, L.-J.; Wu, M.-X.; Wang, W.-P.; Yin, Y.-X.; Sheng, P.; Xin, S. Rare Metals 2022, 41, 2217. doi: 10.1007/s12598-021-01944-5
doi: 10.1007/s12598-021-01944-5
Tan, J.; Matz, J.; Dong, P.; Shen, J.; Ye, M. Adv. Energy Mater. 2021, 11, 2100046. doi: 10.1002/aenm.202100046
doi: 10.1002/aenm.202100046
Yang, Q.; Li, C. Energy Storage Mater. 2018, 14, 100. doi: 10.1016/j.ensm.2018.02.017
doi: 10.1016/j.ensm.2018.02.017
Biswal, P.; Kludze, A.; Rodrigues, J.; Deng, Y.; Moon, T.; Stalin, S.; Zhao, Q.; Yin, J.; Kourkoutis, L. F.; Archer, L. A. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2012071118. doi: 10.1073/pnas.2012071118
doi: 10.1073/pnas.2012071118
Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Wei, F.; Zhang, J.-G.; Zhang, Q. Adv. Sci. 2016, 3, 1500213. doi: 10.1002/advs.201500213
doi: 10.1002/advs.201500213
Li, Y.; Li, Y.; Zhang, L.; Tao, H.; Li, Q.; Zhang, J.; Yang, X. J. Energy Chem. 2023, 77, 123. doi: 10.1016/j.jechem.2022.10.026
doi: 10.1016/j.jechem.2022.10.026
Han, J.-G.; Jeong, M.-Y.; Kim, K.; Park, C.; Sung, C. H.; Bak, D. W.; Kim, K. H.; Jeong, K.-M.; Choi, N.-S. J. Power Sources 2020, 446, 227366. doi: 10.1016/j.jpowsour.2019.227366
doi: 10.1016/j.jpowsour.2019.227366
Liu, J.; Wang, Y.; Liu, F.; Cheng, F.; Chen, J. J. Energy Chem. 2020, 42, 1. doi: 10.1016/j.jechem.2019.05.017
doi: 10.1016/j.jechem.2019.05.017
Wotango, A. S.; Su, W.-N.; Leggesse, E. G.; Haregewoin, A. M.; Lin, M.-H.; Zegeye, T. A.; Cheng, J.-H.; Hwang, B.-J. ACS Appl. Mater. Interfaces 2017, 9, 2410. doi: 10.1021/acsami.6b13105
doi: 10.1021/acsami.6b13105
Han, J.-G.; Kim, K.; Lee, Y.; Choi, N.-S. Adv. Mater. 2019, 31, 1804822. doi: 10.1002/adma.201804822
doi: 10.1002/adma.201804822
Solchenbach, S.; Metzger, M.; Egawa, M.; Beyer, H.; Gasteiger, H. A. J. Electrochem. Soc. 2018, 165, A3022. doi: 10.1149/2.0481813jes
doi: 10.1149/2.0481813jes
Li, X.; Liu, J.; He, J.; Qi, S.; Wu, M.; Wang, H.; Jiang, G.; Huang, J.; Wu, D.; Li, F.; et al. Adv. Sci. 2022, 9, 2201297. doi: 10.1002/advs.202201297
doi: 10.1002/advs.202201297
Zhu, Y.; Li, X.; Si, Y.; Zhang, X.; Sang, P.; Fu, Y. J. Energy Chem. 2022, 73, 422. doi: 10.1016/j.jechem.2022.06.046
doi: 10.1016/j.jechem.2022.06.046
Lu, L.-L.; Ge, J.; Yang, J.-N.; Chen, S.-M.; Yao, H.-B.; Zhou, F.; Yu, S.-H. Nano Lett. 2016, 16, 4431. doi: 10.1021/acs.nanolett.6b01581
doi: 10.1021/acs.nanolett.6b01581
Yoo, D.-J.; Elabd, A.; Choi, S.; Cho, Y.; Kim, J.; Lee, S. J.; Choi, S. H.; Kwon, T.-w.; Char, K.; Kim, K. J.; et al. Adv. Mater. 2019, 31, 1901645. doi: 10.1002/adma.201901645
doi: 10.1002/adma.201901645
Wang, Z.; Wang, X.; Sun, W.; Sun, K. Electrochim. Acta 2017, 252, 127. doi: 10.1016/j.electacta.2017.08.179
doi: 10.1016/j.electacta.2017.08.179
Zhang, R.; Cheng, X.-B.; Zhao, C.-Z.; Peng, H.-J.; Shi, J.-L.; Huang, J.-Q.; Wang, J.; Wei, F.; Zhang, Q. Adv. Mater. 2016, 28, 2155. doi: 10.1002/adma.201504117
doi: 10.1002/adma.201504117
Sun, Z.; Jin, S.; Jin, H.; Du, Z.; Zhu, Y.; Cao, A.; Ji, H.; Wan, L.-J. Adv. Mater. 2018, 30, 1800884. doi: 10.1002/adma.201800884
doi: 10.1002/adma.201800884
Ni, S.; Tan, S.; An, Q.; Mai, L. J. Energy Chem. 2020, 44, 73. doi: 10.1016/j.jechem.2019.09.031
doi: 10.1016/j.jechem.2019.09.031
Li, P.; Dong, X.; Li, C.; Liu, J.; Liu, Y.; Feng, W.; Wang, C.; Wang, Y.; Xia, Y. Angew. Chem. Int. Ed. 2019, 58, 2093. doi: 10.1002/anie.201813905
doi: 10.1002/anie.201813905
Fu, J.; Ji, X.; Chen, J.; Chen, L.; Fan, X.; Mu, D.; Wang, C. Angew. Chem. Int. Ed. 2020, 59, 22194. doi: 10.1002/anie.202009575
doi: 10.1002/anie.202009575
Liu, J.; Wu, M.; Li, X.; Wu, D.; Wang, H.; Huang, J.; Ma, J. Adv. Energy Mater. 2023, 13, 2300084. doi: 10.1002/aenm.202300084
doi: 10.1002/aenm.202300084
Liu, X.; Fu, A.; Lin, J.; Zou, Y.; Liu, G.; Wang, W.; Wu, D.-Y.; Yang, Y.; Zheng, J.; Ye, L. ACS Appl. Energy Mater. 2023, 6, 2001. doi: 10.1021/acsaem.2c03934
doi: 10.1021/acsaem.2c03934
Wu, D.; He, J.; Liu, J.; Wu, M.; Qi, S.; Wang, H.; Huang, J.; Li, F.; Tang, D.; Ma, J. Adv. Energy Mater. 2022, 12, 2200337. doi: 10.1002/aenm.202200337
doi: 10.1002/aenm.202200337
Li, F.; He, J.; Liu, J.; Wu, M.; Hou, Y.; Wang, H.; Qi, S.; Liu, Q.; Hu, J.; Ma, J. Angew. Chem. Int. Ed. 2021, 60, 6600. doi: 10.1002/anie.202013993
doi: 10.1002/anie.202013993
Huang, J.; Liu, J.; He, J.; Wu, M.; Qi, S.; Wang, H.; Li, F.; Ma, J. Angew. Chem. Int. Ed. 2021, 60, 20717. doi: 10.1002/anie.202107957
doi: 10.1002/anie.202107957
Liu, Y.; Tao, X.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O.; Lu, G.; Lou, X. W. Science 2022, 375, 739. doi: 10.1126/science.abn1818
doi: 10.1126/science.abn1818
Heine, J.; Hilbig, P.; Qi, X.; Niehoff, P.; Winter, M.; Bieker, P. M. J. Electrochem. Soc. 2015, 162, A1094. doi: 10.1149/2.0011507jes
doi: 10.1149/2.0011507jes
Lu, Y.; Tu, Z.; Archer, L. A. Nat. Mater. 2014, 13, 961. doi: 10.1038/nmat4041
doi: 10.1038/nmat4041
Liang, J.-Y.; Zhang, X.-D.; Zeng, X.-X.; Yan, M.; Yin, Y.-X.; Xin, S.; Wang, W.-P.; Wu, X.-W.; Shi, J.-L.; Wan, L.-J.; et al. Angew. Chem. Int. Ed. 2020, 59, 6585. doi: 10.1002/anie.201916301
doi: 10.1002/anie.201916301
Wu, Y.; Feng, X.; Liu, X.; Wang, X.; Ren, D.; Wang, L.; Yang, M.; Wang, Y.; Zhang, W.; Li, Y.; et al. Energy Storage Mater. 2021, 43, 248. doi: 10.1016/j.ensm.2021.09.007
doi: 10.1016/j.ensm.2021.09.007
Lee, Y.-M.; Nam, K.-M.; Hwang, E.-H.; Kwon, Y.-G.; Kang, D.-H.; Kim, S.-S.; Song, S.-W. J. Phys. Chem. C 2014, 118, 10631. doi: 10.1021/jp501670g
doi: 10.1021/jp501670g
Pham, H. Q.; Chung, G. J.; Han, J.; Hwang, E.-H.; Kwon, Y.-G.; Song, S.-W. J. Chem. Phys. 2020, 152, 094709. doi: 10.1063/1.5144280
doi: 10.1063/1.5144280
Su, H.; Chen, Z.; Li, M.; Bai, P.; Li, Y.; Ji, X.; Liu, Z.; Sun, J.; Ding, J.; Yang, M.; et al. Adv. Mater. 2023, 35, 2301171. doi: 10.1002/adma.202301171
doi: 10.1002/adma.202301171
Zhu, C.; Wu, D.; Wang, Z.; Wang, H.; Liu, J.; Guo, K.; Liu, Q.; Ma, J. Adv. Funct. Mater. 2023, 2214195. doi: 10.1002/adfm.202214195
doi: 10.1002/adfm.202214195
Kim, E.; Lee, J.; Kim, D.; Lee, K. E.; Han, S. S.; Lim, N.; Kang, J.; Park, C. G.; Kim, K. Chem. Commun. 2009, 1472. doi: 10.1039/B823110A
doi: 10.1039/B823110A
Hou, T.; Yang, G.; Rajput, N. N.; Self, J.; Park, S.-W.; Nanda, J.; Persson, K. A. Nano Energy 2019, 64, 103881. doi: 10.1016/j.nanoen.2019.103881
doi: 10.1016/j.nanoen.2019.103881
VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Comput. Phys. Commun. 2005, 167, 103. doi: 10.1016/j.cpc.2004.12.014
doi: 10.1016/j.cpc.2004.12.014
Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. WIREs Comput. Mol. Sci. 2014, 4, 15. doi: 10.1002/wcms.1159
doi: 10.1002/wcms.1159
Piao, Z.; Gao, R.; Liu, Y.; Zhou, G.; Cheng, H.-M. Adv. Mater. 2023, 35, 2206009. doi: 10.1002/adma.202206009
doi: 10.1002/adma.202206009
Wu, J.; Gao, Z.; Wang, Y.; Yang, X.; Liu, Q.; Zhou, D.; Wang, X.; Kang, F.; Li, B. Nano-Micro Lett. 2022, 14, 147. doi: 10.1007/s40820-022-00896-4
doi: 10.1007/s40820-022-00896-4
Zheng, H.; Xie, Y.; Xiang, H.; Shi, P.; Liang, X.; Xu, W. Electrochim. Acta 2018, 270, 62. doi: 10.1016/j.electacta.2018.03.089
doi: 10.1016/j.electacta.2018.03.089
Plimpton, S. J. Comput. Phys. 1995, 117, 1. doi: 10.1006/jcph.1995.1039
doi: 10.1006/jcph.1995.1039
Qiao, L.; Rodriguez Peña, S.; Martínez-Ibañez, M.; Santiago, A.; Aldalur, I.; Lobato, E.; Sanchez-Diez, E.; Zhang, Y.; Manzano, H.; Zhu, H.; et al. J. Am. Chem. Soc. 2022, 144, 9806. doi: 10.1021/jacs.2c02260
doi: 10.1021/jacs.2c02260
Xiong, S.; Xie, K.; Diao, Y.; Hong, X. J. Power Sources 2014, 246, 840. doi: 10.1016/j.jpowsour.2013.08.041
doi: 10.1016/j.jpowsour.2013.08.041
Zou, P.; Wang, Y.; Chiang, S.-W.; Wang, X.; Kang, F.; Yang, C. Nat. Commun. 2018, 9, 464. doi: 10.1038/s41467-018-02888-8
doi: 10.1038/s41467-018-02888-8
Gao, X.; Zhou, Y.-N.; Han, D.; Zhou, J.; Zhou, D.; Tang, W.; Goodenough, J. B. Joule 2020, 4, 1864. doi: 10.1016/j.joule.2020.06.016
doi: 10.1016/j.joule.2020.06.016
Wang, H.; Gao, H.; Chen, X.; Zhu, J.; Li, W.; Gong, Z.; Li, Y.; Wang, M.-S.; Yang, Y. Adv. Energy Mater. 2021, 11, 2102148. doi: 10.1002/aenm.202102148
doi: 10.1002/aenm.202102148
Oh, J.-M.; Venters, C. C.; Di, C.; Pinto, A. M.; Wan, L.; Younis, I.; Cai, Z.; Arai, C.; So, B. R.; Duan, J.; et al. Nat. Commun. 2020, 11, 1. doi: 10.1038/s41467-019-13993-7
doi: 10.1038/s41467-019-13993-7
Cui, C.; Fan, X.; Zhou, X.; Chen, J.; Wang, Q.; Ma, L.; Yang, C.; Hu, E.; Yang, X.-Q.; Wang, C. J. Am. Chem. Soc. 2020, 142, 8918. doi: 10.1021/jacs.0c02302
doi: 10.1021/jacs.0c02302
Zhiyuan TONG , Ziyuan LI , Ke ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238
Rui Yang , Hui Li , Qingfei Meng , Wenjie Li , Jiliang Wu , Yongjin Fang , Chi Huang , Yuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053
Yajie Li , Bin Chen , Yiping Wang , Hui Xing , Wei Zhao , Geng Zhang , Siqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053
Zeyu Liu , Wenze Huang , Yang Xiao , Jundong Zhang , Weijin Kong , Peng Wu , Chenzi Zhao , Aibing Chen , Qiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
Hao Chen , Dongyue Yang , Gang Huang , Xinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Zhuo Han , Danfeng Zhang , Haixian Wang , Guorui Zheng , Ming Liu , Yanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034
Jiandong Liu , Zhijia Zhang , Kamenskii Mikhail , Volkov Filipp , Eliseeva Svetlana , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036