Citation: Jiandong Liu, Xin Li, Daxiong Wu, Huaping Wang, Junda Huang, Jianmin Ma. Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230603. doi: 10.3866/PKU.WHXB202306039 shu

Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery

  • Corresponding author: Jianmin Ma, nanoelechem@hnu.edu.cn
  • Received Date: 26 June 2023
    Revised Date: 1 August 2023
    Accepted Date: 16 August 2023
    Available Online: 28 August 2023

    Fund Project: the National Natural Science Foundation of China 51971090the National Natural Science Foundation of China U21A20311

  • Metallic lithium (Li) offers Li metal batteries (LMBs) with an opportunity to meet the high-energy demand in many fields. At present, the main cathode materials used for high-energy-density batteries are nickel-rich layered oxides, including nickel cobalt lithium manganese oxides (NCM) with intercalation chemistry. According to this plan, NMC811 demonstrates great merits in this aspect. However, there are still many problems with Li metal anode. The failure of Li anode is mainly caused by the high reactivity of Li metal, which can cause irreversible continuous reactions between Li and electrolyte to shorten cycling life. Due to multiple electroplating and stripping processes, Li anode undergoes significant volume and morphology change, increasing side reactions and the growth of Li dendrites caused by the first two factors. Electrolyte engineering, as a simple and effective modification method, can effectively solve the above problems. Among them, using electrolyte additives is a simple, efficient, and economical electrolyte engineering strategy. Herein, we proposed an anion acceptor electrolyte additive strategy for optimizing the component/structural characteristics of solid/cathode electrolyte interphases to inhibit the growth of Li dendrites and Li+ transition on cathode surface for enhancing cycling and rate performance of Li|| NCM811 battery, which is also ascribed to the regulation of Li+ solvation structure by hexafluorobenzene (HFBen) to realizing the stability of PF6 and the conductivity enhancement of electrolyte. As expected, Li||Li cells with 1% (wt) HFBen-contained electrolyte could achieve a stable cycling above 400 h at 1 mA∙cm−2, and the capacity retention rate of Li||NCM811 battery could reach 75% after 100 cycles at 200 mA∙g−1. Finally, the cycling and rate performance of Li||NMC811 batteries were significantly enhanced at 4.5 V with the help of HFBen. This work demonstrates that HFBen as an additive can effectively improve the electrochemical performance of LMBs. Moreover, the interfacial reaction mechanism across the batterywas analyzed and studied. This study provides new insights for the interface reaction between electrolyte and Li anode.
  • 加载中
    1. [1]

      Huang, J.-D.; Zhu, Y.-H.; Feng, Y.; Han, Y.-H.; Gu, Z.-Y., Liu, R.-X.; Yang, D. Y.; Chen, K.; Zhang, X. Y.; Sun, W.; et al. Acta Phys.-Chim. Sin. 2022, 38, 2208008.  doi: 10.3866/PKU.WHXB202208008

    2. [2]

      Shi, P.; Liu, Z.-Y.; Zhang, X.-Q.; Chen, X.; Yao, N.; Xie, J.; Jin, C.-B.; Zhan, Y.-X.; Ye, G.; Huang, J.-Q.; et al. J. Energy Chem. 2022, 64, 172. doi: 10.1016/j.jechem.2021.04.045  doi: 10.1016/j.jechem.2021.04.045

    3. [3]

      Li, X.; Liu, J.; He, J.; Wang, H.; Qi, S.; Wu, D.; Huang, J.; Li, F.; Hu, W.; Ma, J. Adv. Funct. Mater. 2021, 31, 2104395. doi: 10.1002/adfm.202104395  doi: 10.1002/adfm.202104395

    4. [4]

      Li, D.; Luo, L.; Zhu, J.; Qin, H.; Liu, P.; Sun, Z.; Lei, Y.; Jiang, M. Chin. Chem. Lett. 2022, 33, 1025. doi: 10.1016/j.cclet.2021.07.021  doi: 10.1016/j.cclet.2021.07.021

    5. [5]

      Wu, N.; Zhang, Q.-Y.; Guo, Y.-J.; Zhou, L.; Zhang, L.-J.; Wu, M.-X.; Wang, W.-P.; Yin, Y.-X.; Sheng, P.; Xin, S. Rare Metals 2022, 41, 2217. doi: 10.1007/s12598-021-01944-5  doi: 10.1007/s12598-021-01944-5

    6. [6]

      Tan, J.; Matz, J.; Dong, P.; Shen, J.; Ye, M. Adv. Energy Mater. 2021, 11, 2100046. doi: 10.1002/aenm.202100046  doi: 10.1002/aenm.202100046

    7. [7]

      Yang, Q.; Li, C. Energy Storage Mater. 2018, 14, 100. doi: 10.1016/j.ensm.2018.02.017  doi: 10.1016/j.ensm.2018.02.017

    8. [8]

      Biswal, P.; Kludze, A.; Rodrigues, J.; Deng, Y.; Moon, T.; Stalin, S.; Zhao, Q.; Yin, J.; Kourkoutis, L. F.; Archer, L. A. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2012071118. doi: 10.1073/pnas.2012071118  doi: 10.1073/pnas.2012071118

    9. [9]

      Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Wei, F.; Zhang, J.-G.; Zhang, Q. Adv. Sci. 2016, 3, 1500213. doi: 10.1002/advs.201500213  doi: 10.1002/advs.201500213

    10. [10]

      Li, Y.; Li, Y.; Zhang, L.; Tao, H.; Li, Q.; Zhang, J.; Yang, X. J. Energy Chem. 2023, 77, 123. doi: 10.1016/j.jechem.2022.10.026  doi: 10.1016/j.jechem.2022.10.026

    11. [11]

      Han, J.-G.; Jeong, M.-Y.; Kim, K.; Park, C.; Sung, C. H.; Bak, D. W.; Kim, K. H.; Jeong, K.-M.; Choi, N.-S. J. Power Sources 2020, 446, 227366. doi: 10.1016/j.jpowsour.2019.227366  doi: 10.1016/j.jpowsour.2019.227366

    12. [12]

      Liu, J.; Wang, Y.; Liu, F.; Cheng, F.; Chen, J. J. Energy Chem. 2020, 42, 1. doi: 10.1016/j.jechem.2019.05.017  doi: 10.1016/j.jechem.2019.05.017

    13. [13]

      Wotango, A. S.; Su, W.-N.; Leggesse, E. G.; Haregewoin, A. M.; Lin, M.-H.; Zegeye, T. A.; Cheng, J.-H.; Hwang, B.-J. ACS Appl. Mater. Interfaces 2017, 9, 2410. doi: 10.1021/acsami.6b13105  doi: 10.1021/acsami.6b13105

    14. [14]

      Han, J.-G.; Kim, K.; Lee, Y.; Choi, N.-S. Adv. Mater. 2019, 31, 1804822. doi: 10.1002/adma.201804822  doi: 10.1002/adma.201804822

    15. [15]

      Solchenbach, S.; Metzger, M.; Egawa, M.; Beyer, H.; Gasteiger, H. A. J. Electrochem. Soc. 2018, 165, A3022. doi: 10.1149/2.0481813jes  doi: 10.1149/2.0481813jes

    16. [16]

      Li, X.; Liu, J.; He, J.; Qi, S.; Wu, M.; Wang, H.; Jiang, G.; Huang, J.; Wu, D.; Li, F.; et al. Adv. Sci. 2022, 9, 2201297. doi: 10.1002/advs.202201297  doi: 10.1002/advs.202201297

    17. [17]

      Zhu, Y.; Li, X.; Si, Y.; Zhang, X.; Sang, P.; Fu, Y. J. Energy Chem. 2022, 73, 422. doi: 10.1016/j.jechem.2022.06.046  doi: 10.1016/j.jechem.2022.06.046

    18. [18]

      Lu, L.-L.; Ge, J.; Yang, J.-N.; Chen, S.-M.; Yao, H.-B.; Zhou, F.; Yu, S.-H. Nano Lett. 2016, 16, 4431. doi: 10.1021/acs.nanolett.6b01581  doi: 10.1021/acs.nanolett.6b01581

    19. [19]

      Yoo, D.-J.; Elabd, A.; Choi, S.; Cho, Y.; Kim, J.; Lee, S. J.; Choi, S. H.; Kwon, T.-w.; Char, K.; Kim, K. J.; et al. Adv. Mater. 2019, 31, 1901645. doi: 10.1002/adma.201901645  doi: 10.1002/adma.201901645

    20. [20]

      Wang, Z.; Wang, X.; Sun, W.; Sun, K. Electrochim. Acta 2017, 252, 127. doi: 10.1016/j.electacta.2017.08.179  doi: 10.1016/j.electacta.2017.08.179

    21. [21]

      Zhang, R.; Cheng, X.-B.; Zhao, C.-Z.; Peng, H.-J.; Shi, J.-L.; Huang, J.-Q.; Wang, J.; Wei, F.; Zhang, Q. Adv. Mater. 2016, 28, 2155. doi: 10.1002/adma.201504117  doi: 10.1002/adma.201504117

    22. [22]

      Sun, Z.; Jin, S.; Jin, H.; Du, Z.; Zhu, Y.; Cao, A.; Ji, H.; Wan, L.-J. Adv. Mater. 2018, 30, 1800884. doi: 10.1002/adma.201800884  doi: 10.1002/adma.201800884

    23. [23]

      Ni, S.; Tan, S.; An, Q.; Mai, L. J. Energy Chem. 2020, 44, 73. doi: 10.1016/j.jechem.2019.09.031  doi: 10.1016/j.jechem.2019.09.031

    24. [24]

      Li, P.; Dong, X.; Li, C.; Liu, J.; Liu, Y.; Feng, W.; Wang, C.; Wang, Y.; Xia, Y. Angew. Chem. Int. Ed. 2019, 58, 2093. doi: 10.1002/anie.201813905  doi: 10.1002/anie.201813905

    25. [25]

      Fu, J.; Ji, X.; Chen, J.; Chen, L.; Fan, X.; Mu, D.; Wang, C. Angew. Chem. Int. Ed. 2020, 59, 22194. doi: 10.1002/anie.202009575  doi: 10.1002/anie.202009575

    26. [26]

      Liu, J.; Wu, M.; Li, X.; Wu, D.; Wang, H.; Huang, J.; Ma, J. Adv. Energy Mater. 2023, 13, 2300084. doi: 10.1002/aenm.202300084  doi: 10.1002/aenm.202300084

    27. [27]

      Liu, X.; Fu, A.; Lin, J.; Zou, Y.; Liu, G.; Wang, W.; Wu, D.-Y.; Yang, Y.; Zheng, J.; Ye, L. ACS Appl. Energy Mater. 2023, 6, 2001. doi: 10.1021/acsaem.2c03934  doi: 10.1021/acsaem.2c03934

    28. [28]

      Wu, D.; He, J.; Liu, J.; Wu, M.; Qi, S.; Wang, H.; Huang, J.; Li, F.; Tang, D.; Ma, J. Adv. Energy Mater. 2022, 12, 2200337. doi: 10.1002/aenm.202200337  doi: 10.1002/aenm.202200337

    29. [29]

      Li, F.; He, J.; Liu, J.; Wu, M.; Hou, Y.; Wang, H.; Qi, S.; Liu, Q.; Hu, J.; Ma, J. Angew. Chem. Int. Ed. 2021, 60, 6600. doi: 10.1002/anie.202013993  doi: 10.1002/anie.202013993

    30. [30]

      Huang, J.; Liu, J.; He, J.; Wu, M.; Qi, S.; Wang, H.; Li, F.; Ma, J. Angew. Chem. Int. Ed. 2021, 60, 20717. doi: 10.1002/anie.202107957  doi: 10.1002/anie.202107957

    31. [31]

      Liu, Y.; Tao, X.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O.; Lu, G.; Lou, X. W. Science 2022, 375, 739. doi: 10.1126/science.abn1818  doi: 10.1126/science.abn1818

    32. [32]

      Heine, J.; Hilbig, P.; Qi, X.; Niehoff, P.; Winter, M.; Bieker, P. M. J. Electrochem. Soc. 2015, 162, A1094. doi: 10.1149/2.0011507jes  doi: 10.1149/2.0011507jes

    33. [33]

      Lu, Y.; Tu, Z.; Archer, L. A. Nat. Mater. 2014, 13, 961. doi: 10.1038/nmat4041  doi: 10.1038/nmat4041

    34. [34]

      Liang, J.-Y.; Zhang, X.-D.; Zeng, X.-X.; Yan, M.; Yin, Y.-X.; Xin, S.; Wang, W.-P.; Wu, X.-W.; Shi, J.-L.; Wan, L.-J.; et al. Angew. Chem. Int. Ed. 2020, 59, 6585. doi: 10.1002/anie.201916301  doi: 10.1002/anie.201916301

    35. [35]

      Wu, Y.; Feng, X.; Liu, X.; Wang, X.; Ren, D.; Wang, L.; Yang, M.; Wang, Y.; Zhang, W.; Li, Y.; et al. Energy Storage Mater. 2021, 43, 248. doi: 10.1016/j.ensm.2021.09.007  doi: 10.1016/j.ensm.2021.09.007

    36. [36]

      Lee, Y.-M.; Nam, K.-M.; Hwang, E.-H.; Kwon, Y.-G.; Kang, D.-H.; Kim, S.-S.; Song, S.-W. J. Phys. Chem. C 2014, 118, 10631. doi: 10.1021/jp501670g  doi: 10.1021/jp501670g

    37. [37]

      Pham, H. Q.; Chung, G. J.; Han, J.; Hwang, E.-H.; Kwon, Y.-G.; Song, S.-W. J. Chem. Phys. 2020, 152, 094709. doi: 10.1063/1.5144280  doi: 10.1063/1.5144280

    38. [38]

      Su, H.; Chen, Z.; Li, M.; Bai, P.; Li, Y.; Ji, X.; Liu, Z.; Sun, J.; Ding, J.; Yang, M.; et al. Adv. Mater. 2023, 35, 2301171. doi: 10.1002/adma.202301171  doi: 10.1002/adma.202301171

    39. [39]

      Zhu, C.; Wu, D.; Wang, Z.; Wang, H.; Liu, J.; Guo, K.; Liu, Q.; Ma, J. Adv. Funct. Mater. 2023, 2214195. doi: 10.1002/adfm.202214195  doi: 10.1002/adfm.202214195

    40. [40]

      Kim, E.; Lee, J.; Kim, D.; Lee, K. E.; Han, S. S.; Lim, N.; Kang, J.; Park, C. G.; Kim, K. Chem. Commun. 2009, 1472. doi: 10.1039/B823110A  doi: 10.1039/B823110A

    41. [41]

      Hou, T.; Yang, G.; Rajput, N. N.; Self, J.; Park, S.-W.; Nanda, J.; Persson, K. A. Nano Energy 2019, 64, 103881. doi: 10.1016/j.nanoen.2019.103881  doi: 10.1016/j.nanoen.2019.103881

    42. [42]

      VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Comput. Phys. Commun. 2005, 167, 103. doi: 10.1016/j.cpc.2004.12.014  doi: 10.1016/j.cpc.2004.12.014

    43. [43]

      Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. WIREs Comput. Mol. Sci. 2014, 4, 15. doi: 10.1002/wcms.1159  doi: 10.1002/wcms.1159

    44. [44]

      Piao, Z.; Gao, R.; Liu, Y.; Zhou, G.; Cheng, H.-M. Adv. Mater. 2023, 35, 2206009. doi: 10.1002/adma.202206009  doi: 10.1002/adma.202206009

    45. [45]

      Wu, J.; Gao, Z.; Wang, Y.; Yang, X.; Liu, Q.; Zhou, D.; Wang, X.; Kang, F.; Li, B. Nano-Micro Lett. 2022, 14, 147. doi: 10.1007/s40820-022-00896-4  doi: 10.1007/s40820-022-00896-4

    46. [46]

      Zheng, H.; Xie, Y.; Xiang, H.; Shi, P.; Liang, X.; Xu, W. Electrochim. Acta 2018, 270, 62. doi: 10.1016/j.electacta.2018.03.089  doi: 10.1016/j.electacta.2018.03.089

    47. [47]

      Plimpton, S. J. Comput. Phys. 1995, 117, 1. doi: 10.1006/jcph.1995.1039  doi: 10.1006/jcph.1995.1039

    48. [48]

      Qiao, L.; Rodriguez Peña, S.; Martínez-Ibañez, M.; Santiago, A.; Aldalur, I.; Lobato, E.; Sanchez-Diez, E.; Zhang, Y.; Manzano, H.; Zhu, H.; et al. J. Am. Chem. Soc. 2022, 144, 9806. doi: 10.1021/jacs.2c02260  doi: 10.1021/jacs.2c02260

    49. [49]

      Xiong, S.; Xie, K.; Diao, Y.; Hong, X. J. Power Sources 2014, 246, 840. doi: 10.1016/j.jpowsour.2013.08.041  doi: 10.1016/j.jpowsour.2013.08.041

    50. [50]

      Zou, P.; Wang, Y.; Chiang, S.-W.; Wang, X.; Kang, F.; Yang, C. Nat. Commun. 2018, 9, 464. doi: 10.1038/s41467-018-02888-8  doi: 10.1038/s41467-018-02888-8

    51. [51]

      Gao, X.; Zhou, Y.-N.; Han, D.; Zhou, J.; Zhou, D.; Tang, W.; Goodenough, J. B. Joule 2020, 4, 1864. doi: 10.1016/j.joule.2020.06.016  doi: 10.1016/j.joule.2020.06.016

    52. [52]

      Wang, H.; Gao, H.; Chen, X.; Zhu, J.; Li, W.; Gong, Z.; Li, Y.; Wang, M.-S.; Yang, Y. Adv. Energy Mater. 2021, 11, 2102148. doi: 10.1002/aenm.202102148  doi: 10.1002/aenm.202102148

    53. [53]

      Oh, J.-M.; Venters, C. C.; Di, C.; Pinto, A. M.; Wan, L.; Younis, I.; Cai, Z.; Arai, C.; So, B. R.; Duan, J.; et al. Nat. Commun. 2020, 11, 1. doi: 10.1038/s41467-019-13993-7  doi: 10.1038/s41467-019-13993-7

    54. [54]

      Cui, C.; Fan, X.; Zhou, X.; Chen, J.; Wang, Q.; Ma, L.; Yang, C.; Hu, E.; Yang, X.-Q.; Wang, C. J. Am. Chem. Soc. 2020, 142, 8918. doi: 10.1021/jacs.0c02302  doi: 10.1021/jacs.0c02302

  • 加载中
    1. [1]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    2. [2]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    3. [3]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    4. [4]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    5. [5]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    6. [6]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    7. [7]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    8. [8]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    9. [9]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    10. [10]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    13. [13]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    14. [14]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    15. [15]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    16. [16]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    17. [17]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    18. [18]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    20. [20]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

Metrics
  • PDF Downloads(8)
  • Abstract views(714)
  • HTML views(153)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return