Citation:
Jingshuo Zhang, Yue Zhai, Ziyun Zhao, Jiaxing He, Wei Wei, Jing Xiao, Shichao Wu, Quan-Hong Yang. Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica,
;2024, 40(6): 230600.
doi:
10.3866/PKU.WHXB202306006
-
Silicon (Si) has a high theoretical gravimetric capacity (3579 mAh∙g−1 for Li15Si4), which is almost ten times higher than that of graphite (372 mAh∙g−1) anode. Besides, it has low electrochemical potentials (0.4 V vs. Li+/Li), and abundant reserves. Thus, Si becomes a key anode material for the development of high-energy lithium-ion batteries. Nano-Si, typically compounded with graphite, has opened its commercialization. But the specific capacity of commercial Si/graphite composites is generally below 600 mAh∙g−1, which is far below the theoretical specific capacity of Si. In the meanwhile, the high cost, high specific surface area and low tap density of nano-Si limit its volumetric energy density and large-scale production further. Compared to the above materials, micro-Si (1–10 μm) is gaining industry attention for its low cost, as it does not require high-energy ball milling to reduce the particle size. Also, low specific surface area and high tap density conduce to reducing interfacial side reactions and increasing volumetric energy density. Therefore, micro-Si has a particular advantage over application in high volumetric energy density storage devices. However, due to the huge stress caused by significant volume change (300%), there are more severe problems such as particle pulverization, electrode disintegration, conductive network failure and uncontrolled growth of solid electrolyte interphases, which greatly hinder its commercialization. Binders are essential in adapting to Si volume changes to ensure the integrity of the electrode and keeping the tight contact among the active material, conductive additive and current collector to provide a stable conductive network. The development of high-capacity and high-stability micro-Si-based anodes poses greater challenges to the design of binders. In this review, we first clarify the binding mechanism of binders, factors that influence the bonding forces, and design strategies of binders for relieving the volume change of Si electrodes. As a major part, we systematically discuss the strategies and corresponding mechanisms of functional binders for silicon-based anodes from aspects of self-healing binders, conductive binders, ion-conductive binders, and the facilitating effect of functional binders on the stable SEI (Solid Electrolyte Interphase) formation. Finally, the existing problems and challenges are pointed out in terms of long-cycle stability, initial Coulombic efficiency (ICE) and binder ratio under commercial loading. We put forward the promising directions for developing functional binders towards the practical use of micro-Si anode: an ideal binder should be multifunctional and helpful to robust electron/ion conductive networks and stable SEI throughout the long cycling life of micro-Si, where the polymer molecular structure of functional binders can be systematically designed by artificial intelligence and machine learning technologies.
-
-
-
[1]
Yin, H. Y.; Yu, Y.; Li, Z. C, ; Zhang, G. H.; Feng, Y. J. Acta Phys. -Chim. Sin. 2019, 35, 1341. doi: 10.3866/PKU.WHXB201904042
-
[2]
Kwon, T. W.; Choi, J. W.; Coskun, A. Chem. Soc. Rev. 2018, 47, 2145. doi: 10.1039/c7cs00858a doi: 10.1039/c7cs00858a
-
[3]
Tan, D. H. S.; Chen, Y. -T.; Yang, H.; Bao, W.; Sreenarayanan, B.; Doux, J. -M.; Li, W.; Lu, B.; Ham, S. -Y.; Sayahpour, B.; et al. Science 2021, 373, 1494. doi: 10.1126/science.abg7217 doi: 10.1126/science.abg7217
-
[4]
Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. Science 2011, 334, 75. doi: 10.1126/science.1209150 doi: 10.1126/science.1209150
-
[5]
Choi, S.; Kwon, T. -W.; Coskun, A.; Choi, J. W. Science 2017, 357, 279. doi: 10.1126/science.aal4373 doi: 10.1126/science.aal4373
-
[6]
Xiao, J.; Han, J.; Kong, D.; Shi, H.; Du, X.; Zhao, Z.; Chen, F.; Lan, P.; Wu, S.; Zhang, Y.; et al. Energy Storage Mater. 2022, 50, 554. doi: 10.1016/j.ensm.2022.05.034 doi: 10.1016/j.ensm.2022.05.034
-
[7]
Ren, Y.; Xiang, L.; Yin, X.; Xiao, R.; Zuo, P.; Gao, Y.; Yin, G.; Du, C. Adv. Funct. Mater. 2022, 32, 2110046. doi: 10.1002/adfm.202110046 doi: 10.1002/adfm.202110046
-
[8]
Pan, S.; Han, J.; Wang, Y.; Li, Z.; Chen, F.; Guo, Y.; Han, Z.; Xiao, K.; Yu, Z.; Yu, M.; et al. Adv. Mater. 2022, 34, 2203617. doi: 10.1002/adma.202203617 doi: 10.1002/adma.202203617
-
[9]
Mu, T.; Sun, Y.; Wang, C.; Zhao, Y.; Doyle-Davis, K.; Liang, J.; Sui, X.; Li, R.; Du, C.; Zuo, P.; et al. Nano Energy 2022, 103, 107829. doi: 10.1016/j.nanoen.2022.107829 doi: 10.1016/j.nanoen.2022.107829
-
[10]
Han, J.; Tang, D. M.; Kong, D.; Chen, F.; Xiao, J.; Zhao, Z.; Pan, S.; Wu, S.; Yang, Q. H. Sci. Bull. 2020, 65, 1563. doi: 10.1016/j.scib.2020.05.018 doi: 10.1016/j.scib.2020.05.018
-
[11]
Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; et al. Nat. Nanotechnol. 2012, 7, 310. doi: 10.1038/nnano.2012.35 doi: 10.1038/nnano.2012.35
-
[12]
Yu, Y.; Gu, L.; Zhu, C.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Adv. Mater. 2010, 22, 2247. doi: 10.1002/adma.200903755 doi: 10.1002/adma.200903755
-
[13]
Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Muller, J. O.; Schlogl, R.; Antonietti, M.; Maier, J. Angew. Chem. Int. Ed. 2008, 47, 1645. doi: 10.1002/anie.200704287 doi: 10.1002/anie.200704287
-
[14]
Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. Nat. Mater. 2010, 9, 353. doi: 10.1038/nmat2725 doi: 10.1038/nmat2725
-
[15]
Zhao, Z.; Han, J.; Chen, F.; Xiao, J.; Zhao, Y.; Zhang, Y.; Kong, D.; Weng, Z.; Wu, S.; Yang, Q. H. Adv. Energy Mater. 2022, 12, 2103565. doi: 10.1002/aenm.202103565 doi: 10.1002/aenm.202103565
-
[16]
Chen, F.; Han, J.; Kong, D.; Yuan, Y.; Xiao, J.; Wu, S.; Tang, D. M.; Deng, Y.; Lv, W.; Lu, J.; et al. Natl. Sci. Rev. 2021, 8, 12. doi: 10.1093/nsr/nwab012 doi: 10.1093/nsr/nwab012
-
[17]
Chen, J.; Fan, X.; Li, Q.; Yang, H.; Khoshi, M. R.; Xu, Y.; Hwang, S.; Chen, L.; Ji, X.; Yang, C.; et al. Nat. Energy 2020, 5, 386. doi: 10.1038/s41560-020-0601-1 doi: 10.1038/s41560-020-0601-1
-
[18]
Zhu, T.; Sternlicht, H.; Ha, Y.; Fang, C.; Liu, D.; Savitzky, B. H.; Zhao, X.; Lu, Y.; Fu, Y.; Ophus, C.; et al. Nat. Energy 2023, 8, 129. doi: 10.1038/s41560-022-01176-6 doi: 10.1038/s41560-022-01176-6
-
[19]
McBrayer, J. D.; Rodrigues, M. -T. F.; Schulze, M. C.; Abraham, D. P.; Apblett, C. A.; Bloom, I.; Carroll, G. M.; Colclasure, A. M.; Fang, C.; Harrison, K. L.; et al. Nat. Energy 2021, 6, 866. doi: 10.1038/s41560-021-00883-w doi: 10.1038/s41560-021-00883-w
-
[20]
Wang, Q.; Zhu, M.; Chen, G.; Dudko, N.; Li, Y.; Liu, H.; Shi, L.; Wu, G.; Zhang, D. Adv. Mater. 2022, 34, 2109658. doi: 10.1002/adma.202109658 doi: 10.1002/adma.202109658
-
[21]
Lopez, J.; Mackanic, D. G.; Cui, Y.; Bao, Z. Nat. Rev. Mater. 2019, 4, 312. doi: 10.1038/s41578-019-0103-6 doi: 10.1038/s41578-019-0103-6
-
[22]
Li, P.; Kim, H.; Myung, S. -T.; Sun, Y. -K. Energy Storage Mater. 2021, 35, 550. doi: 10.1016/j.ensm.2020.11.028 doi: 10.1016/j.ensm.2020.11.028
-
[23]
Zhao, Y. M.; Yue, F. S.; Li, S. C.; Zhang, Y.; Tian, Z. R.; Xu, Q.; Xin, S.; Guo, Y. G. InfoMat 2021, 3, 460. doi: 10.1002/inf2.12185 doi: 10.1002/inf2.12185
-
[24]
Kwon, T. -W.; Choi, J. W.; Coskun, A. Joule 2019, 3, 662. doi: 10.1016/j.joule.2019.01.006 doi: 10.1016/j.joule.2019.01.006
-
[25]
An, H.; Jiang, L.; Li, F.; Wu, P.; Zhu, X.; Wei, S.; Zhou, Y. Acta Phys. -Chim. Sin. 2020, 36, 1905034. doi: 10.3866/PKU.WHXB201905034
-
[26]
Zhao, Z.; Chen, F.; Han, J.; Kong, D.; Pan, S.; Xiao, J.; Wu, S.; Yang, Q. H. Adv. Energy Mater. 2023, 13, 2300367. doi: 10.1002/aenm.202300367 doi: 10.1002/aenm.202300367
-
[27]
Chen, H.; Ling, M.; Hencz, L.; Ling, H. Y.; Li, G.; Lin, Z.; Liu, G.; Zhang, S. Chem. Rev. 2018, 118, 8936. doi: 10.1021/acs.chemrev.8b00241 doi: 10.1021/acs.chemrev.8b00241
-
[28]
Liu, G.; Zheng, H.; Song, X.; Battaglia, V. S. J. Electrochem. Soc. 2012, 159, A214. doi: 10.1149/2.024203jes doi: 10.1149/2.024203jes
-
[29]
Hernandez, C. R.; Etiemble, A.; Douillard, T.; Mazouzi, D.; Karkar, Z.; Maire, E.; Guyomard, D.; Lestriez, B.; Roué, L. Adv. Energy Mater. 2018, 8, 1701787. doi: 10.1002/aenm.201701787 doi: 10.1002/aenm.201701787
-
[30]
Zhu, S.; Li, H.; Hu, Z.; Zhang, Q.; Zhao, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38, 2103052. doi: 10.3866/PKU.WHXB202103052
-
[31]
Wu, S.; Yang, Y.; Liu, C.; Liu, T.; Zhang, Y.; Zhang, B.; Luo, D.; Pan, F.; Lin, Z. ACS Energy Lett. 2020, 6, 290. doi: 10.1021/acsenergylett.0c02342 doi: 10.1021/acsenergylett.0c02342
-
[32]
Lee, H. A.; Shin, M.; Kim, J.; Choi, J. W.; Lee, H. Adv. Mater. 2021, 33, 2007460. doi: 10.1002/adma.202007460 doi: 10.1002/adma.202007460
-
[33]
Han, D. Y.; Han, I. K.; Son, H. B.; Kim, Y. S.; Ryu, J.; Park, S. Adv. Funct. Mater. 2023, 33, 2213458. doi: 10.1002/adfm.202213458 doi: 10.1002/adfm.202213458
-
[34]
Xu, Z.; Yang, J.; Zhang, T.; Nuli, Y.; Wang, J.; Hirano, S. -I. Joule 2018, 2, 950. doi: 10.1016/j.joule.2018.02.012 doi: 10.1016/j.joule.2018.02.012
-
[35]
Li, Z.; Wu, G.; Yang, Y.; Wan, Z.; Zeng, X.; Yan, L.; Wu, S.; Ling, M.; Liang, C.; Hui, K. N.; et al. Adv. Energy Mater. 2022, 12, 2201197. doi: 10.1002/aenm.202201197 doi: 10.1002/aenm.202201197
-
[36]
Li, B.; Cao, P. F.; Saito, T.; Sokolov, A. P. Chem. Rev. 2023, 123, 701. doi: 10.1021/acs.chemrev.2c00575 doi: 10.1021/acs.chemrev.2c00575
-
[37]
Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Nat. Chem. 2013, 5, 1042. doi: 10.1038/nchem.1802 doi: 10.1038/nchem.1802
-
[38]
Li, C. H.; Zuo, J. L. Adv. Mater. 2020, 32, 1903762. doi: 10.1002/adma.201903762 doi: 10.1002/adma.201903762
-
[39]
Kim, J.; Park, K.; Cho, Y.; Shin, H.; Kim, S.; Char, K.; Choi, J. W. Adv. Sci. 2021, 8, 2004290. doi: 10.1002/advs.202004290 doi: 10.1002/advs.202004290
-
[40]
Zhang, L.; Zhang, L.; Chai, L.; Xue, P.; Hao, W.; Zheng, H. J. Mater. Chem. A 2014, 2, 19036. doi: 10.1039/c4ta04320k doi: 10.1039/c4ta04320k
-
[41]
Ying, H.; Zhang, Y.; Cheng, J. Nat. Commun. 2014, 5, 3218. doi: 10.1038/ncomms4218 doi: 10.1038/ncomms4218
-
[42]
Chen, Z.; Wang, C.; Lopez, J.; Lu, Z.; Cui, Y.; Bao, Z. Adv. Energy Mater. 2015, 5, 1401826. doi: 10.1002/aenm.201401826 doi: 10.1002/aenm.201401826
-
[43]
Jiao, X.; Yin, J.; Xu, X.; Wang, J.; Liu, Y.; Xiong, S.; Zhang, Q.; Song, J. Adv. Funct. Mater. 2020, 31, 2005699. doi: 10.1002/adfm.202005699 doi: 10.1002/adfm.202005699
-
[44]
Kim, S. -M.; Kim, M. H.; Choi, S. Y.; Lee, J. G.; Jang, J.; Lee, J. B.; Ryu, J. H.; Hwang, S. S.; Park, J. -H.; Shin, K.; et al. Energy Environ. Sci. 2015, 8, 1538. doi: 10.1039/c5ee00472a doi: 10.1039/c5ee00472a
-
[45]
Zhao, H.; Wei, Y.; Qiao, R.; Zhu, C.; Zheng, Z.; Ling, M.; Jia, Z.; Bai, Y.; Fu, Y.; Lei, J.; et al. Nano Lett. 2015, 15, 7927. doi: 10.1021/acs.nanolett.5b03003 doi: 10.1021/acs.nanolett.5b03003
-
[46]
Liu, X.; Xu, Z.; Iqbal, A.; Chen, M.; Ali, N.; Low, C.; Qi, R.; Zai, J.; Qian, X. Nano-Micro Lett. 2021, 13, 54. doi: 10.1007/s40820-020-00564-5 doi: 10.1007/s40820-020-00564-5
-
[47]
Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098. doi: 10.1103/PhysRevLett.39.1098 doi: 10.1103/PhysRevLett.39.1098
-
[48]
Chen, S.; Song, Z.; Wang, L.; Chen, H.; Zhang, S.; Pan, F.; Yang, L. Accounts Chem. Res. 2022, 55, 2088. doi: 10.1021/acs.accounts.2c00259 doi: 10.1021/acs.accounts.2c00259
-
[49]
Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W. Adv. Mater. 2011, 23, 4679. doi: 10.1002/adma.201102421 doi: 10.1002/adma.201102421
-
[50]
Zhao, H.; Wang, Z.; Lu, P.; Jiang, M.; Shi, F.; Song, X.; Zheng, Z.; Zhou, X.; Fu, Y.; Abdelbast, G.; et al. Nano Lett. 2014, 14, 6704. doi: 10.1021/nl503490h doi: 10.1021/nl503490h
-
[51]
Wu, M.; Xiao, X.; Vukmirovic, N.; Xun, S.; Das, P. K.; Song, X.; Olalde-Velasco, P.; Wang, D.; Weber, A. Z.; Wang, L. W.; et al. J. Am. Chem. Soc. 2013, 135, 12048. doi: 10.1021/ja4054465 doi: 10.1021/ja4054465
-
[52]
Zhu, T.; Liu, G. J. Electrochem. Soc. 2021, 168, 050533. doi: 10.1149/1945-7111/abff01 doi: 10.1149/1945-7111/abff01
-
[53]
Liu, D.; Zhao, Y.; Tan, R.; Tian, L. -L.; Liu, Y.; Chen, H.; Pan, F. Nano Energy 2017, 36, 206. doi: 10.1016/j.nanoen.2017.04.043 doi: 10.1016/j.nanoen.2017.04.043
-
[54]
Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. J.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G.; et al. ACS Nano 2016, 10, 3702. doi: 10.1021/acsnano.6b00218 doi: 10.1021/acsnano.6b00218
-
[55]
Tsai, C. -Y.; Liu, Y. -L. Electrochim. Acta 2021, 379, 138180. doi: 10.1016/j.electacta.2021.138180 doi: 10.1016/j.electacta.2021.138180
-
[56]
Munaoka, T.; Yan, X.; Lopez, J.; To, J. W. F.; Park, J.; Tok, J. B. H.; Cui, Y.; Bao, Z. Adv. Energy Mater. 2018, 8, 1703138. doi: 10.1002/aenm.201703138 doi: 10.1002/aenm.201703138
-
[57]
Hu, Y.; Shao, D.; Chen, Y.; Peng, J.; Dai, S.; Huang, M.; Guo, Z. -H.; Luo, X.; Yue, K. ACS Appl. Energy Mater. 2021, 4, 10886. doi: 10.1021/acsaem.1c01849 doi: 10.1021/acsaem.1c01849
-
[58]
Cai, Y.; Liu, C.; Yu, Z.; Ma, W.; Jin, Q.; Du, R.; Qian, B.; Jin, X.; Wu, H.; Zhang, Q.; et al. Adv. Sci. 2023, 10, 2205590. doi: 10.1002/advs.202205590 doi: 10.1002/advs.202205590
-
[59]
Liu, H.; Wu, Q.; Guan, X.; Liu, M.; Wang, F.; Li, R.; Xu, J. ACS Appl. Energy Mater. 2022, 5, 4934. doi: 10.1021/acsaem.2c00329 doi: 10.1021/acsaem.2c00329
-
[60]
Garsuch, R. R.; Le, D. -B.; Garsuch, A.; Li, J.; Wang, S.; Farooq, A.; Dahn, J. R. J. Electrochem. Soc. 2008, 155, A721. doi: 10.1149/1.2956964 doi: 10.1149/1.2956964
-
[61]
Li, Z.; Zhang, Y.; Liu, T.; Gao, X.; Li, S.; Ling, M.; Liang, C.; Zheng, J.; Lin, Z. Adv. Energy Mater. 2020, 10, 1903110. doi: 10.1002/aenm.201903110 doi: 10.1002/aenm.201903110
-
[62]
Liu, J.; Zhang, Q.; Zhang, T.; Li, J. -T.; Huang, L.; Sun, S. -G. Adv. Funct. Mater. 2015, 25, 3599. doi: 10.1002/adfm.201500589 doi: 10.1002/adfm.201500589
-
[63]
Zeng, W.; Wang, L.; Peng, X.; Liu, T.; Jiang, Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K.; Zhou, Y. Adv. Energy Mater. 2018, 8, 1702314. doi: 10.1002/aenm.201702314 doi: 10.1002/aenm.201702314
-
[64]
Oh, D. Y.; Nam, Y. J.; Park, K. H.; Jung, S. H.; Kim, K. T.; Ha, A. R.; Jung, Y. S. Adv. Energy Mater. 2019, 9, 1802927. doi: 10.1002/aenm.201802927 doi: 10.1002/aenm.201802927
-
[65]
Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P. F. Adv. Energy Mater. 2021, 11, 2003836. doi: 10.1002/aenm.202003836 doi: 10.1002/aenm.202003836
-
[66]
Nguyen, C. C.; Yoon, T.; Seo, D. M.; Guduru, P.; Lucht, B. L. ACS Appl. Mater. Inter. 2016, 8, 12211. doi: 10.1021/acsami.6b03357 doi: 10.1021/acsami.6b03357
-
[67]
Parikh, P.; Sina, M.; Banerjee, A.; Wang, X.; D'Souza, M. S.; Doux, J. -M.; Wu, E. A.; Trieu, O. Y.; Gong, Y.; Zhou, Q.; et al. Chem. Mater. 2019, 31, 2535. doi: 10.1021/acs.chemmater.8b05020 doi: 10.1021/acs.chemmater.8b05020
-
[68]
Browning, K. L.; Browning, J. F.; Doucet, M.; Yamada, N. L.; Liu, G.; Veith, G. M. Phys. Chem. Chem. Phys. 2019, 21, 17356. doi: 10.1039/c9cp02610j doi: 10.1039/c9cp02610j
-
[69]
Browning, K. L.; Sacci, R. L.; Doucet, M.; Browning, J. F.; Kim, J. R.; Veith, G. M. ACS Appl. Mater. Inter. 2020, 12, 10018. doi: 10.1021/acsami.9b22382 doi: 10.1021/acsami.9b22382
-
[1]
-
-
-
[1]
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
-
[2]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
-
[3]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
-
[4]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005
-
[5]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[6]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
-
[7]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[8]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
-
[9]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[10]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[11]
Chenyue Huang , Hongfei Zheng , Ning Qin , Canpei Wang , Liguang Wang , Jun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051
-
[12]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[13]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[14]
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
-
[15]
Yuxia Luo , Xiaoyu Xie , Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129
-
[16]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[17]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[18]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[19]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[20]
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
-
[1]
Metrics
- PDF Downloads(8)
- Abstract views(746)
- HTML views(85)