Citation: Hao Chen,  Dongyue Yang,  Gang Huang,  Xinbo Zhang. Progress on Liquid Organic Electrolytes of Li-O2 Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230505. doi: 10.3866/PKU.WHXB202305059 shu

Progress on Liquid Organic Electrolytes of Li-O2 Batteries

  • Corresponding author: Gang Huang,  Xinbo Zhang, 
  • Received Date: 31 May 2023
    Revised Date: 17 August 2023
    Accepted Date: 26 August 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2020YFE0204500, 2021YFF0500600), the National Natural Science Foundation of China (52171194, 52271140), the CAS Project for Young Scientists in Basic Research (YSBR-058), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2020230, 2021223), and the Changchun Science and Technology Development Plan Funding Project (21ZY06).

  • Li-O2 batteries have garnered significant attention due to their ultrahigh theoretical energy density, comparable to that of gasoline. However, despite this promise, several challenges have hindered the commercial application of Li-O2 batteries. These challenges include poor reversibility, unsatisfactory cycling duration, and high overpotential during battery operation. The key factor behind the poor reversibility of current Li-O2 batteries is the occurrence of side reactions between various battery components and discharge products or intermediates. The electrolyte, an essential component in Li-O2 batteries, plays a crucial role in charge transport and mass transfer within the battery. Among the available electrolytes used in Li-O2 batteries, liquid organic electrolytes have been predominantly investigated as potential options. However, they suffer from insufficient chemical and electrochemical stability, which contributes to the overall poor reversibility. Substantial progress has been made in understanding the factors that lead to the degradation of liquid organic electrolytes and in enhancing their stability. However, there is still a need for more significant improvements to achieve practical performance. This review comprehensively introduces the development of liquid organic electrolytes for Li-O2 batteries, focusing on solvents, lithium salts, and additives. It outlines the specific requirements of electrolytes for Li-O2 batteries and highlights the importance of reducing charge overpotentials as a critical strategy to mitigate both electrochemical and chemical degradation. The review proceeds to detail the composition of liquid organic electrolytes, beginning with solvents. Carbonates, ethers, amides, and ionic liquids are discussed, along with their respective advantages, disadvantages, and strategies to overcome limitations. The role of lithium salts is then examined, with an emphasis on the relationship between the properties of lithium salts, such as donor number and anion polarity, and electrolyte performance. Some lithium salts are highlighted for their additional functions, such as forming stable solid electrolyte interfaces (SEI) on the anode side and reducing overpotential during charging. Additives in liquid organic electrolytes are also discussed. Redox mediators and singlet oxygen quenchers are discussed as representative additives, showcasing their significance in Li-O2 batteries. Redox mediators can influence the reaction mechanism, leading to lower overpotentials in both discharge and charge processes and increased capacity. Notably, classical redox mediators like LiI are introduced, and criteria for selecting appropriate redox mediators are outlined. On the other hand, singlet oxygen quenchers convert aggressive singlet oxygen into harmless triplet oxygen, thereby suppressing unwanted side reactions in Li-O2 batteries. The mechanism behind singlet oxygen generation is also addressed. In summary, this review aims to provide a comprehensive overview of the progress in liquid organic electrolytes for Li-O2 batteries. It highlights the need for better electrolyte design by addressing various aspects such as solvents, lithium salts, and additives. This comprehensive understanding will guide future research efforts towards developing more stable and efficient electrolytes for Li-O2 batteries, thereby advancing their practical applicability.
  • 加载中
    1. [1]

      (1) Wu, F.; Maier, J.; Yu, Y. Chem. Soc. Rev. 2020, 49, 1569. doi:10.1039/c7cs00863e

    2. [2]

      (2) Manthiram, A.; Fu, Y.; Chung, S. H.; Zu, C.; Su, Y. S. Chem. Rev. 2014, 114, 11751. doi:10.1021/cr500062v

    3. [3]

      (3) Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Chem. Rev. 2014, 114, 5611. doi:10.1021/cr400573b

    4. [4]

      (4) Chen, K.; Yang, D. Y.; Huang, G.; Zhang, X. B. Acc. Chem. Res. 2021, 54, 632. doi:10.1021/acs.accounts.0c00772

    5. [5]

      (5) Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A.; et al. Chem. Rev. 2020, 120, 6626. doi:10.1021/acs.chemrev.9b00609

    6. [6]

      (6) Freunberger, S. A.; Chen, Y.; Drewett, N. E.; Hardwick, L. J.; Barde, F.; Bruce, P. G. Angew. Chem. Int. Ed. 2011, 50, 8609. doi:10.1002/anie.201102357

    7. [7]

      (7) Liu, T.; Leskes, M.; Yu, W.; Moore, A. J.; Zhou, L.; Bayley, P. M.; Kim, G.; Grey, C. P. Science 2015, 350, 530. doi:10.1126/science.aac7730

    8. [8]

      (8) Lu, J.; Lee, Y. J.; Luo, X.; Lau, K. C.; Asadi, M.; Wang, H. H.; Brombosz, S.; Wen, J.; Zhai, D.; Chen, Z.; et al. Nature 2016, 529, 377. doi:10.1038/nature16484

    9. [9]

      (9) Xia, C.; Kwok, C. Y.; Nazar, L. F. Science 2018, 361, 777. doi:10.1126/science.aas9343

    10. [10]

      (10) Chen, Y.; Xu, J.; He, P.; Qiao, Y.; Guo, S.; Yang, H.; Zhou, H. Sci. Bull. 2022, 67, 2449. doi:10.1016/j.scib.2022.11.027

    11. [11]

      (11) Luntz, A. C.; McCloskey, B. D. Nat. Energy 2017, 2, 17056. doi:10.1038/nenergy.2017.56

    12. [12]

      (12) Zhang, P.; Ding, M.; Li, X.; Li, C.; Li, Z.; Yin, L. Adv. Energy Mater. 2020, 10, 2001789. doi:10.1002/aenm.202001789

    13. [13]

      (13) Li, Y.; Wang, X.; Dong, S.; Chen, X.; Cui, G. Adv. Energy Mater. 2016, 6, 1600751. doi:10.1002/aenm.201600751

    14. [14]

      (14) Chi, X.; Li, M.; Di, J.; Bai, P.; Song, L.; Wang, X.; Li, F.; Liang, S.; Xu, J.; Yu, J. Nature 2021, 592, 551. doi:10.1038/s41586-021-03410-9

    15. [15]

      (15) Wu, X.; Li, Z.; Song, C.; Chen, L.; Dai, P.; Zhang, P.; Qiao, Y.; Huang, L.; Sun, S.-G. ACS Mater. Lett. 2022, 4, 682. doi:10.1021/acsmaterialslett.1c00756

    16. [16]

      (16) Liang, Z. J.; Wang, W. W.; Lu, Y.-C. Joule 2022, 6, 2458. doi:10.1016/j.joule.2022.10.008

    17. [17]

      (17) Yao, X.; Dong, Q.; Cheng, Q.; Wang, D. Angew. Chem. Int. Ed. 2016, 55, 11344. doi:10.1002/anie.201601783

    18. [18]

      (18) Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Nat. Chem. 2013, 5, 489. doi:10.1038/nchem.1646

    19. [19]

      (19) Sun, Z.; Lin, X.; Wang, C.; Hu, A.; Hou, Q.; Tan, Y.; Dou, W.; Yuan, R.; Zheng, M.; Dong, Q. Angew. Chem. Int. Ed. 2022, 61, e202207570. doi:10.1002/anie.202207570

    20. [20]

      (20) Guo, H.; Luo, W.; Chen, J.; Chou, S.; Liu, H.; Wang, J. Adv. Sustain. Syst. 2018, 2, 1700183 doi:10.1002/adsu.201700183

    21. [21]

      (21) McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Mori, T.; Scheffler, R.; Speidel, A.; Sherwood, M.; Luntz, A. C. J. Phys. Chem. Lett. 2012, 3, 3043. doi:10.1021/jz301359t

    22. [22]

      (22) Wandt, J.; Jakes, P.; Granwehr, J.; Gasteiger, H. A.; Eichel, R. A. Angew. Chem. Int. Ed. 2016, 55, 6892. doi:10.1002/anie.201602142

    23. [23]

      (23) Petit, Y. K.; Mourad, E.; Prehal, C.; Leypold, C.; Windischbacher, A.; Mijailovic, D.; Slugovc, C.; Borisov, S. M.; Zojer, E.; Brutti, S.; et al. Nat. Chem. 2021, 13, 465. doi:10.1038/s41557-021-00643-z

    24. [24]

      (24) Mahne, N.; Schafzahl, B.; Leypold, C.; Leypold, M.; Grumm, S.; Leitgeb, A.; Strohmeier, G. A.; Wilkening, M.; Fontaine, O.; Kramer, D.; et al. Nat. Energy 2017, 2, 17036. doi:10.1038/nenergy.2017.36

    25. [25]

      (25) McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. J. Phys. Chem. Lett. 2011, 2, 1161. doi:10.1021/jz200352v

    26. [26]

      (26) Xu, K. Chem. Rev. 2004, 104, 4303. doi:10.1021/cr030203g

    27. [27]

      (27) Ogasawara, T.; Debart, A.; Holzapfel, M.; Novak, P.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 1390. doi:10.1021/ja056811q

    28. [28]

      (28) Mizuno, F.; Nakanishi, S.; Kotani, Y.; Yokoishi, S.; Iba, H. Electrochemistry 2010, 78, 403. doi:10.5796/electrochemistry.78.403

    29. [29]

      (29) Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Barde, F.; Novak, P.; Bruce, P. G. J. Am. Chem. Soc. 2011, 133, 8040. doi:10.1021/ja2021747

    30. [30]

      (30) Veith, G. M.; Dudney, N. J.; Howe, J.; Nanda, J. J. Phys. Chem. C 2011, 115, 14325. doi:10.1021/jp2043015

    31. [31]

      (31) Chen, K.; Du, J. Y.; Wang, J.; Yang, D. Y.; Chu, J. W.; Chen, H.; Zhang, H. R.; Huang, G.; Zhang, X. B. Chin. J. Chem. 2022, 41, 314. doi:10.1002/cjoc.202200498

    32. [32]

      (32) Peng, Z.; Freunberger, S. A.; Chen, Y.; Bruce, P. G. Science 2012, 337, 563. doi:10.1126/science.1223985

    33. [33]

      (33) Xu, D.; Wang, Z. L.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Chem. Commun. 2012, 48, 6948. doi:10.1039/c2cc32844e

    34. [34]

      (34) Mozhzhukhina, N.; Méndez De Leo, L. P.; Calvo, E. J. J. Phys. Chem. C 2013, 117, 18375. doi:10.1021/jp407221c

    35. [35]

      (35) Feng, S.; Huang, M.; Lamb, J. R.; Zhang, W.; Tatara, R.; Zhang, Y.; Zhu, Y. G.; Perkinson, C. F.; Johnson, J. A.; Shao-Horn, Y. Chem 2019, 5, 2630. doi:10.1016/j.chempr.2019.07.003

    36. [36]

      (36) Nishioka, K.; Saito, M.; Ono, M.; Matsuda, S.; Nakanishi, S. ACS Appl. Energy Mater. 2022, 5, 4404. doi:10.1021/acsaem.1c03999

    37. [37]

      (37) Lee, H.; Lee, D. J.; Lee, J.-N.; Song, J.; Lee, Y.; Ryou, M.-H.; Park, J.-K.; Lee, Y. M. Electrochim. Acta 2014, 123, 419. doi:10.1016/j.electacta.2014.01.042

    38. [38]

      (38) Lai, J.; Xing, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R. Angew. Chem. Int. Ed. 2020, 59, 2974. doi:10.1002/anie.201903459

    39. [39]

      (39) Wu, Z.; Tian, Y.; Chen, H.; Wang, L.; Qian, S.; Wu, T.; Zhang, S.; Lu, J. Chem. Soc. Rev. 2022, 51, 8045. doi:10.1039/d2cs00003b

    40. [40]

      (40) Read, J. J. Electrochem. Soc. 2006, 153, A96. doi:10.1149/1.2131827

    41. [41]

      (41) Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. Nat. Chem. 2012, 4, 579. doi:10.1038/nchem.1376

    42. [42]

      (42) Qiao, L.; Judez, X.; Rojo, T.; Armand, M.; Zhang, H. J. Electrochem. Soc. 2020, 167, 070534. doi:10.1149/1945-7111/ab7aa0

    43. [43]

      (43) Sharon, D.; Hirshberg, D.; Afri, M.; Frimer, A. A.; Aurbach, D. Chem. Commun. 2017, 53, 3269. doi:10.1039/c6cc09086a

    44. [44]

      (44) Bryantsev, V. S.; Faglioni, F. J. Phys. Chem. A 2012, 116, 7128. doi:10.1021/jp301537w

    45. [45]

      (45) Adams, B. D.; Black, R.; Williams, Z.; Fernandes, R.; Cuisinier, M.; Berg, E. J.; Novak, P.; Murphy, G. K.; Nazar, L. F. Adv. Energy Mater. 2015, 5, 1400867. doi:10.1002/aenm.201400867

    46. [46]

      (46) Gao, X.; Chen, Y.; Johnson, L.; Bruce, P. G. Nat. Mater. 2016, 15, 882. doi:10.1038/nmat4629

    47. [47]

      (47) Lai, J.; Liu, H.; Xing, Y.; Zhao, L.; Shang, Y.; Huang, Y.; Chen, N.; Li, L.; Wu, F.; Chen, R. Adv. Funct. Mater. 2021, 31, 2101831. doi:10.1002/adfm.202101831

    48. [48]

      (48) Bryantsev, V. S.; Giordani, V.; Walker, W.; Blanco, M.; Zecevic, S.; Sasaki, K.; Uddin, J.; Addison, D.; Chase, G. V. J. Phys. Chem. A 2011, 115, 12399. doi:10.1021/jp2073914

    49. [49]

      (49) Walker, W.; Giordani, V.; Uddin, J.; Bryantsev, V. S.; Chase, G. V.; Addison, D. J. Am. Chem. Soc. 2013, 135, 2076. doi:10.1021/ja311518s

    50. [50]

      (50) Yu, Y.; Huang, G.; Du, J.-Y.; Wang, J.-Z.; Wang, Y.; Wu, Z.-J.; Zhang, X.-B. Energy Environ. Sci. 2020, 13, 3075. doi:10.1039/d0ee01897j

    51. [51]

      (51) Kuboki, T.; Okuyama, T.; Ohsaki, T.; Takami, N. J. Power Sources 2005, 146, 766. doi:10.1016/j.jpowsour.2005.03.082

    52. [52]

      (52) Elia, G. A.; Hassoun, J.; Kwak, W. J.; Sun, Y. K.; Scrosati, B.; Mueller, F.; Bresser, D.; Passerini, S.; Oberhumer, P.; Tsiouvaras, N.; et al. Nano Lett. 2014, 14, 6572. doi:10.1021/nl5031985

    53. [53]

      (53) Xie, J.; Dong, Q.; Madden, I.; Yao, X.; Cheng, Q.; Dornath, P.; Fan, W.; Wang, D. Nano Lett. 2015, 15, 8371. doi:10.1021/acs.nanolett.5b04097

    54. [54]

      (54) Cai, Y.; Hou, Y.; Lu, Y.; Zhang, Q.; Yan, Z.; Chen, J. Angew. Chem. Int. Ed. 2023, e202218014. doi:10.1002/anie.202218014

    55. [55]

      (55) Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; et al. Chem. Rev. 2021, 121, 1232. doi:10.1021/acs.chemrev.0c00385

    56. [56]

      (56) Geng, L.; Wang, X.; Han, K.; Hu, P.; Zhou, L.; Zhao, Y.; Luo, W.; Mai, L. ACS Energy Lett. 2021, 7, 247. doi:10.1021/acsenergylett.1c02088

    57. [57]

      (57) Li, C. L.; Huang, G.; Yu, Y.; Xiong, Q.; Yan, J. M.; Zhang, X. B. J. Am. Chem. Soc. 2022, 144, 5827. doi:10.1021/jacs.1c11711

    58. [58]

      (58) Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2010, 114, 9178. doi:10.1021/jp102019y

    59. [59]

      (59) Xu, D.; Wang, Z. L.; Xu, J. J.; Zhang, L. L.; Wang, L. M.; Zhang, X. B. Chem. Commun. 2012, 48, 11674. doi:10.1039/c2cc36815c

    60. [60]

      (60) Boisset, A.; Menne, S.; Jacquemin, J.; Balducci, A.; Anouti, M. Phys. Chem. Chem. Phys. 2013, 15, 20054. doi:10.1039/c3cp53406e

    61. [61]

      (61) Sharon, D.; Hirsberg, D.; Salama, M.; Afri, M.; Frimer, A. A.; Noked, M.; Kwak, W.; Sun, Y. K.; Aurbach, D. ACS Appl. Mater. Interfaces 2016, 8, 5300. doi:10.1021/acsami.5b11483

    62. [62]

      (62) Burke, C. M.; Pande, V.; Khetan, A.; Viswanathan, V.; McCloskey, B. D. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 9293. doi:10.1073/pnas.1505728112

    63. [63]

      (63) Oswald, S.; Mikhailova, D.; Scheiba, F.; Reichel, P.; Fiedler, A.; Ehrenberg, H. Anal. Bioanal. Chem. 2011, 400, 691. doi:10.1007/s00216-010-4646-z

    64. [64]

      (64) Sharon, D.; Hirsberg, D.; Afri, M.; Chesneau, F.; Lavi, R.; Frimer, A. A.; Sun, Y. K.; Aurbach, D. ACS Appl. Mater. Interfaces 2015, 7, 16590. doi:10.1021/acsami.5b04145

    65. [65]

      (65) Rosy; Akabayov, S.; Leskes, M.; Noked, M. ACS Appl. Mater. Interfaces 2018, 10, 29622. doi:10.1021/acsami.8b10054

    66. [66]

      (66) Tong, B.; Huang, J.; Zhou, Z.; Peng, Z. Adv. Mater. 2018, 30, 1704841. doi:10.1002/adma.201704841

    67. [67]

      (67) Xiong, Q.; Huang, G.; Yu, Y.; Li, C. L.; Li, J. C.; Yan, J. M.; Zhang, X. B. Angew. Chem. Int. Ed. 2022, 61, e202116635. doi:10.1002/anie.202116635

    68. [68]

      (68) Dou, Y.; Xie, Z.; Wei, Y.; Peng, Z.; Zhou, Z. Natl. Sci. Rev. 2022, 9, nwac040. doi:10.1093/nsr/nwac040

    69. [69]

      (69) Bergner, B. J.; Schurmann, A.; Peppler, K.; Garsuch, A.; Janek, J. J. Am. Chem. Soc. 2014, 136, 15054. doi:10.1021/ja508400m

    70. [70]

      (70) Gao, X.; Chen, Y.; Johnson, L. R.; Jovanov, Z. P.; Bruce, P. G. Nat. Energy 2017, 2, 17118. doi:10.1038/nenergy.2017.118

    71. [71]

      (71) Zhang, C.; Dandu, N.; Rastegar, S.; Misal, S. N.; Hemmat, Z.; Ngo, A. T.; Curtiss, L. A.; Salehi-Khojin, A. Adv. Energy Mater. 2020, 10, 2000201. doi:10.1002/aenm.202000201

    72. [72]

      (72) Lim, H. D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K. Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H.; et al. Angew. Chem. Int. Ed. 2014, 53, 3926. doi:10.1002/anie.201400711

    73. [73]

      (73) Kwak, W. J.; Hirshberg, D.; Sharon, D.; Shin, H. J.; Afri, M.; Park, J. B.; Garsuch, A.; Chesneau, F. F.; Frimer, A. A.; Aurbach, D.; et al. J. Mater. Chem. A 2015, 3, 8855. doi:10.1039/c5ta01399b

    74. [74]

      (74) Burke, C. M.; Black, R.; Kochetkov, I. R.; Giordani, V.; Addison, D.; Nazar, L. F.; McCloskey, B. D. ACS Energy Lett. 2016, 1, 747. doi:10.1021/acsenergylett.6b00328

    75. [75]

      (75) Tułodziecki, M.; Leverick, G. M.; Amanchukwu, C. V.; Katayama, Y.; Kwabi, D. G.; Bardé, F.; Hammond, P. T.; Shao-Horn, Y. Energy Environ. Sci. 2017, 10, 1828. doi:10.1039/c7ee00954b

    76. [76]

      (76) Liu, T.; Kim, G.; Jónsson, E.; Castillo-Martinez, E.; Temprano, I.; Shao, Y.; Carretero-González, J.; Kerber, R. N.; Grey, C. P. ACS Catal. 2018, 9, 66. doi:10.1021/acscatal.8b02783

    77. [77]

      (77) Wang, A.; Wu, X.; Zou, Z.; Qiao, Y.; Wang, D.; Xing, L.; Chen, Y.; Lin, Y.; Avdeev, M.; Shi, S. Angew. Chem. Int. Ed. 2023, e202217354. doi:10.1002/anie.202217354

    78. [78]

      (78) Kwak, W. J.; Kim, H.; Petit, Y. K.; Leypold, C.; Nguyen, T. T.; Mahne, N.; Redfern, P.; Curtiss, L. A.; Jung, H. G.; Borisov, S. M.; et al. Nat. Commun. 2019, 10, 1380. doi:10.1038/s41467-019-09399-0

    79. [79]

      (79) Kwak, W.-J.; Freunberger, S. A.; Kim, H.; Park, J.; Nguyen, T. T.; Jung, H.-G.; Byon, H. R.; Sun, Y.-K. ACS Catal. 2019, 9, 9914. doi:10.1021/acscatal.9b01337

    80. [80]

      (80) Chen, Y.; Gao, X.; Johnson, L. R.; Bruce, P. G. Nat. Commun. 2018, 9, 767. doi:10.1038/s41467-018-03204-0

    81. [81]

      (81) Cao, D.; Shen, X.; Wang, A.; Yu, F.; Wu, Y.; Shi, S.; Freunberger, S. A.; Chen, Y. Nat. Catal. 2022, 5, 193. doi:10.1038/s41929-022-00752-z

    82. [82]

      (82) Ahn, S.; Zor, C.; Yang, S.; Lagnoni, M.; Dewar, D.; Nimmo, T.; Chau, C.; Jenkins, M.; Kibler, A. J.; Pateman, A.; et al. Nat. Chem. 2023, 15, 1022. doi:10.1038/s41557-023-01203-3

    83. [83]

      (83) Schurmann, A.; Luerssen, B.; Mollenhauer, D.; Janek, J.; Schroder, D. Chem. Rev. 2021, 121, 12445. doi:10.1021/acs.chemrev.1c00139

    84. [84]

      (84) Hassoun, J.; Croce, F.; Armand, M.; Scrosati, B. Angew. Chem. 2011, 123, 3055. doi:10.1002/ange.201006264

    85. [85]

      (85) Mahne, N.; Renfrew, S. E.; McCloskey, B. D.; Freunberger, S. A. Angew. Chem. Int. Ed. 2018, 57, 5529. doi:10.1002/anie.201802277

    86. [86]

      (86) Mourad, E.; Petit, Y. K.; Spezia, R.; Samojlov, A.; Summa, F. F.; Prehal, C.; Leypold, C.; Mahne, N.; Slugovc, C.; Fontaine, O.; et al. Energy Environ. Sci. 2019, 12, 2559. doi:10.1039/c9ee01453e

    87. [87]

      (87) Dong, S.; Yang, S.; Chen, Y.; Kuss, C.; Cui, G.; Johnson, L. R.; Gao, X.; Bruce, P. G. Joule 2022, 6, 185. doi:10.1016/j.joule.2021.12.012

    88. [88]

      (88) Petit, Y. K.; Leypold, C.; Mahne, N.; Mourad, E.; Schafzahl, L.; Slugovc, C.; Borisov, S. M.; Freunberger, S. A. Angew. Chem. Int. Ed. 2019, 58, 6535. doi:10.1002/anie.201901869

    89. [89]

      (89) Liang, Z.; Zou, Q.; Xie, J.; Lu, Y.-C. Energy Environ. Sci. 2020, 13, 2870. doi:10.1039/d0ee01114b

    90. [90]

      (90) Jiang, Z.; Huang, Y.; Zhu, Z.; Gao, S.; Lv, Q.; Li, F. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2202835119. doi:10.1073/pnas.2202835119

    91. [91]

    92. [92]

      (92) Kwak, W.-J.; Chae, S.; Feng, R.; Gao, P.; Read, J.; Engelhard, M. H.; Zhong, L.; Xu, W.; Zhang, J.-G. ACS Energy Lett. 2020, 5, 2182. doi:10.1021/acsenergylett.0c00809

  • 加载中
    1. [1]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    2. [2]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    3. [3]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    4. [4]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    5. [5]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    6. [6]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    9. [9]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    10. [10]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    11. [11]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    12. [12]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    13. [13]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    14. [14]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    15. [15]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    16. [16]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    20. [20]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

Metrics
  • PDF Downloads(3)
  • Abstract views(159)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return