Citation: Hongpeng He, Mengmeng Zhang, Mengjiao Hao, Wei Du, Haibing Xia. Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230404. doi: 10.3866/PKU.WHXB202304043 shu

Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods

  • Corresponding author: Wei Du, duwei@ytu.edu.cn Haibing Xia, hbxia@sdu.edu.cn
  • Received Date: 24 April 2023
    Revised Date: 17 May 2023
    Accepted Date: 18 May 2023
    Available Online: 29 May 2023

    Fund Project: the National Natural Science Foundation of China 22072076the National Natural Science Foundation of China 21773142the Taishan Scholarship in Shandong Province tstp20221106

  • Gold nanorods (Au NRs) have been widely used in the optics, electricity, informatics, and biomedical fields in recent years. However, Au NRs with specialized requirements cannot be prepared by conventional methods. For instance, in photothermal therapy, Au NRs with high aspect ratios (ARs) are desirable for increasing tissue penetration and reducing the burning of human skin during treatment. However, when their ARs were adjusted to match the laser used in second near-infrared windows (NIR-II), the length and width of the Au NRs simultaneously increased. This increase in width reduces its photothermal conversion efficiency. Unfortunately, tuning the ARs of Au NRs at a fixed width requires complex procedures. In this study, we developed a new seeded-growth method to synthesize different ARs of fixed width Au NRs (FW-Au NRs). To the best of our knowledge, this is the first study to adjust the length of FW-Au NRs by introducing lauryl alcohol (LA) molecules into the traditional seeded growth method. Moreover, the length span of FW23-Au, FW14-Au, and FW6.5-Au NRs (the superscript numbers denote the width of Au NRs in nm) was adjusted between 130 and 38.4 nm, 109 and 26.4 nm, and 16 and 46 nm, respectively, by judiciously selecting the corresponding reaction conditions. Notably, the lengths of the Au NRs can be readily achieved at a fixed width over a wide range. In addition, their ARs were tuned at a fixed width by adjusting only their length, instead of simultaneously varying their length and width. In addition, their widths were maintained between 6.5 and 23 nm by adjusting [AgNO3] between 0.24 and 0.30 mmol∙L−1 in the presence of LA. Furthermore, the synergetic effect of Ag+ and LA on the density of the cetyltrimethylammonium (CTA)-Br-Ag+ complexes distributed on the facets of added Au-NP seeds, which can impact their symmetry-breaking efficiency (SBE) and the particle number of Au-NP seeds that grow into final Au NRs, is key to the synthesis of FW-Au NRs. The results of this study offer a flexible and reliable method to tune the length of Au NRs with a fixed width and pave the way for achieving an on-demand synthesis of Au NRs, especially for cancer photothermal therapy.
  • 加载中
    1. [1]

      Ye, J. M.; Wen, Q.; Wu, Y.; Fu, Q. R.; Zhang, X.; Wang, J. M.; Gao, S.; Song, J. B. Nano Res. 2022, 15 (7), 6372. doi: 10.1007/s12274-022-4191-z  doi: 10.1007/s12274-022-4191-z

    2. [2]

      Zheng, J. P.; Cheng, X. Z.; Zhang, H.; Bai, X. P.; Ai, R.; Shao, L.; Wang, J. F. Chem. Rev. 2021, 121 (21), 13342. doi: 10.1021/acs.chemrev.1c00422  doi: 10.1021/acs.chemrev.1c00422

    3. [3]

      Ali, M. R. K.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.; Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P.; et al. Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (15), E3110. doi: 10.1073/pnas.1619302114  doi: 10.1073/pnas.1619302114

    4. [4]

      Tsai, M. -F.; Chang, S. -H. G.; Cheng, F. -Y.; Shanmugam, V.; Cheng, Y. -S.; Su, C. -H.; Yeh, C. -S. ACS Nano 2013, 7 (6), 5330. doi: 10.1021/nn401187c  doi: 10.1021/nn401187c

    5. [5]

      Wang, Z.; Shao, D.; Chang, Z. M.; Lu, M. M.; Wang, Y. S.; Yue, J.; Yang, D.; Li, M. Q.; Xu, Q. B.; Dong, W. F. ACS Nano 2017, 11 (12), 12732. doi: 10.1021/acsnano.7b07486  doi: 10.1021/acsnano.7b07486

    6. [6]

      Zhang, H. Y.; Hao, C. L.; Qu, A. H.; Sun, M. Z.; Xu, L. G.; Xu, C. L.; Kuang, H. Adv. Funct. Mater. 2018, 28 (48), 1805320. doi: 10.1002/adfm.201805320  doi: 10.1002/adfm.201805320

    7. [7]

      Fu, Q. R.; Ye, J. M.; Wang, J. J.; Liao, N. S.; Feng, H. J.; Su, L. C.; Ge, X. G.; Yang, H. H.; Song, J. B. Small 2021, 17 (26), 2008061. doi: 10.1002/smll.202008061  doi: 10.1002/smll.202008061

    8. [8]

      Dong, Q.; Wang, X.; Hu, X. X.; Xiao, L. Q.; Zhang, L.; Song, L. J.; Xu, M. L.; Zou, Y. X.; Chen, L.; Chen, Z.; et al. Angew. Chem. Int. Ed. 2018, 57 (1), 177. doi: 10.1002/anie.201709648  doi: 10.1002/anie.201709648

    9. [9]

      González-Rubio, G.; Mosquera, J.; Kumar, V.; Pedrazo-Tardajos, A.; Llombart, P.; Solís, D. M.; Lobato, I.; Noya, E. G.; Guerrero-Martínez, A.; Taboada, J. M.; et al. Science 2020, 368 (6498), 1472. doi: 10.1126/science.aba0980  doi: 10.1126/science.aba0980

    10. [10]

      Ni, W. H.; Kou, X. S.; Yang, Z.; Wang, J. F. ACS Nano 2008, 2 (4), 677. doi: 10.1021/nn7003603  doi: 10.1021/nn7003603

    11. [11]

      Xiao, J. Y.; Qi, L. M. Acta Phys. -Chim. Sin. 2020, 36 (10), 1910001. doi: 10.3866/PKU.WHXB201910001  doi: 10.3866/PKU.WHXB201910001

    12. [12]

      Lu, J.; Xue, Y.; Bernardino, K.; Zhang, N. -N.; Gomes, W. R.; Ramesar, N. S.; Liu, S.; Hu, Z.; Sun, T.; de Moura, A. F.; et al. Science 2021, 371 (6536), 1368. doi: 10.1126/science.abd8576  doi: 10.1126/science.abd8576

    13. [13]

      Huang, X. H.; Neretina, S.; El-Sayed, M. A. Adv. Mater. 2009, 21 (48), 4880. doi: 10.1002/adma.200802789  doi: 10.1002/adma.200802789

    14. [14]

      Song, J. B.; Yang, X. Y.; Jacobson, O.; Huang, P.; Sun, X. L.; Lin, L. S.; Yan, X. F.; Niu, G.; Ma, Q. J.; Chen, X. T. Adv. Mater. 2015, 27 (33), 4910. doi: 10.1002/adma.201502486  doi: 10.1002/adma.201502486

    15. [15]

      Park, K.; Biswas, S.; Kanel, S.; Nepal, D.; Vaia, R. A. J. Phys. Chem. C 2014, 118 (11), 5918. doi: 10.1021/jp5013279  doi: 10.1021/jp5013279

    16. [16]

      Jia, H. L.; Fang, C. H.; Zhu, X. -M.; Ruan, Q. F.; Wang, Y. -X. J.; Wang, J. F. Langmuir 2015, 31 (26), 7418. doi: 10.1021/acs.langmuir.5b01444  doi: 10.1021/acs.langmuir.5b01444

    17. [17]

      Park, J. -E.; Kim, M.; Hwang, J. -H.; Nam, J. -M. Small Methods 2017, 1 (3), 1600032. doi: 10.1002/smtd.201600032  doi: 10.1002/smtd.201600032

    18. [18]

      Tang, H. L; Xu, X. J.; Chen, Y. X.; Xin, H. H.; Wan, T.; Li, B. W.; Pan, H. M.; Li, D.; Ping, Y. Adv. Mater. 2021, 33 (12), 2006003. doi: 10.1002/adma.202006003  doi: 10.1002/adma.202006003

    19. [19]

      Yang, H.; He, H. P.; Tong, Z. R.; Xia, H. B.; Mao, Z. W.; Gao, C. Y. J. Colloid Interface Sci. 2020, 565, 186. doi: 10.1016/j.jcis.2020.01.026  doi: 10.1016/j.jcis.2020.01.026

    20. [20]

      Ye, X. C.; Jin, L. H.; Caglayan, H.; Chen, J.; Xing, G. Z.; Zheng, C.; Doan-Nguyen, V.; Kang, Y.; Engheta, N.; Kagan, C. R.; et al. ACS Nano 2012, 6 (3), 2804. doi: 10.1021/nn300315j  doi: 10.1021/nn300315j

    21. [21]

      Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25 (8), 1450. doi: 10.1021/cm303661d  doi: 10.1021/cm303661d

    22. [22]

      Chang, H. -H.; Murphy, C. J. Chem. Mater. 2018, 30 (4), 1427. doi: 10.1021/acs.chemmater.7b05310  doi: 10.1021/acs.chemmater.7b05310

    23. [23]

      Walsh, M. J.; Tong, W. M.; Katz-Boon, H.; Mulvaney, P.; Etheridge, J.; Funston, A. M. Acc. Chem. Res. 2017, 50 (12), 2925. doi: 10.1021/acs.accounts.7b00313  doi: 10.1021/acs.accounts.7b00313

    24. [24]

      Tong, W.; Walsh, M. J.; Mulvaney, P.; Etheridge, J.; Funston, A. M. J. Phys. Chem. C 2017, 121 (6), 3549. doi: 10.1021/acs.jpcc.6b10343  doi: 10.1021/acs.jpcc.6b10343

    25. [25]

      Walsh, M. J.; Barrow, S. J.; Tong, W.; Funston, A. M.; Etheridge, J. ACS Nano 2015, 9 (1), 715. doi: 10.1021/nn506155r  doi: 10.1021/nn506155r

    26. [26]

      Song, Y. H.; Zhang, M. M.; Fang, H. T.; Xia, H. B. ChemPhysMater 2023, 2 (2), 97. doi: 10.1016/j.chphma.2022.04.006  doi: 10.1016/j.chphma.2022.04.006

    27. [27]

      Zhu, J.; Lennox, R. B. ACS Appl. Nano Mater. 2021, 4 (4), 3790. doi: 10.1021/acsanm.1c00230  doi: 10.1021/acsanm.1c00230

    28. [28]

      Sau, T. K.; Murphy, C. J. Langmuir 2004, 20 (15), 6414. doi: 10.1021/la049463z  doi: 10.1021/la049463z

    29. [29]

      Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15 (10), 1957. doi: 10.1021/cm020732l  doi: 10.1021/cm020732l

    30. [30]

      Lohse, S. E.; Murphy, C. J. Chem. Mater. 2013, 25 (8), 1250. doi: 10.1021/cm303708p  doi: 10.1021/cm303708p

    31. [31]

      Burrows, N. D.; Harvey, S.; Idesis, F. A.; Murphy, C. J. Langmuir 2017, 33 (8), 1891. doi: 10.1021/acs.langmuir.6b03606  doi: 10.1021/acs.langmuir.6b03606

    32. [32]

      Zhang, X.; Tran, N.; Egan, T.; Sharma, B.; Chen, G. J. Phys. Chem. C 2021, 125 (24), 13350. doi: 10.1021/acs.jpcc.1c01375  doi: 10.1021/acs.jpcc.1c01375

    33. [33]

      González-Rubio, G.; Scarabelli, L.; Guerrero-Martínez, A.; Liz-Marzán, L. M. ChemNanoMat 2020, 6 (5), 698. doi: 10.1002/cnma.201900754  doi: 10.1002/cnma.201900754

    34. [34]

      Meena, S. K.; Sulpizi, M. Angew. Chem. Int. Ed. 2016, 55 (39), 11960. doi: 10.1002/anie.201604594  doi: 10.1002/anie.201604594

    35. [35]

      Seibt, S.; Zhang, H.; Mudie, S.; Förster, S.; Mulvaney, P. J. Phys. Chem. C 2021, 125 (36), 19947. doi: 10.1021/acs.jpcc.1c06778  doi: 10.1021/acs.jpcc.1c06778

    36. [36]

      González-Rubio, G.; Kumar, V.; Llombart, P.; Díaz-Núñez, P.; Bladt, E.; Altantzis, T.; Bals, S.; Peña-Rodríguez, O.; Noya, E. G.; MacDowell, L. G.; et al. ACS Nano 2019, 13 (4), 4424. doi: 10.1021/acsnano.8b09658  doi: 10.1021/acsnano.8b09658

    37. [37]

      He, H. P.; Wu, C. S.; Bi, C. X.; Song, Y. H.; Wang, D. Y.; Xia, H. B. Chem. Eur. J. 2021, 27 (27), 7549. doi: 10.1002/chem.202005422  doi: 10.1002/chem.202005422

    38. [38]

      Llombart, P.; Palafox, M. A.; MacDowell, L. G.; Noya, E. G. Colloids Surf. A-Physicochem. Eng. Aspects 2019, 580, 123730. doi: 10.1016/j.colsurfa.2019.123730  doi: 10.1016/j.colsurfa.2019.123730

    39. [39]

      Kim, W. -J.; Yang, S. -M.; Kim, M. J. Colloid Interface Sci. 1997, 194 (1), 108. doi: 10.1006/jcis.1997.5093  doi: 10.1006/jcis.1997.5093

    40. [40]

      Dubey, N. J. Mol. Liq. 2013, 184, 60. doi: 10.1016/j.molliq.2013.04.022  doi: 10.1016/j.molliq.2013.04.022

    41. [41]

      Karayil, J.; Kumar, S.; Hassan, P. A.; Talmon, Y.; Sreejith, L. RSC Adv. 2015, 5 (16), 12434. doi: 10.1039/C4RA10052B  doi: 10.1039/C4RA10052B

    42. [42]

      Rodríguez-Fernández, J.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L. M. J. Phys. Chem. B 2005, 109 (30), 14257. doi: 10.1021/jp052516g  doi: 10.1021/jp052516g

    43. [43]

      Gallagher, R.; Zhang, X.; Altomare, A.; Lawrence, D.; Shawver, N.; Tran, N.; Beazley, M.; Chen, G. Nano Res. 2021, 14 (4), 1167. doi: 10.1007/s12274-020-3167-0  doi: 10.1007/s12274-020-3167-0

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    5. [5]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    6. [6]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    7. [7]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    8. [8]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    9. [9]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    10. [10]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    11. [11]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    12. [12]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    13. [13]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    14. [14]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    15. [15]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    16. [16]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    20. [20]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

Metrics
  • PDF Downloads(0)
  • Abstract views(280)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return