Heterogeneous Catalysis for Deoxygenation of Cellulose and Its Derivatives to Chemicals

English
Heterogeneous Catalysis for Deoxygenation of Cellulose and Its Derivatives to Chemicals

-
Key words:
- Cellulose
- / Sugars
- / 5-Hydroxymethyl furfural
- / C―O activation
- / Catalytic deoxygenation
-
-
[1]
Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044. doi: 10.1021/cr068360d
-
[2]
Lin, Y. C.; Huber, G. W. Energy Environ. Sci. 2009, 2 (1), 68. doi: 10.1039/b814955k
-
[3]
Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Chem. Soc. Rev. 2012, 41 (24), 8075. doi: 10.1039/c2cs35188a
-
[4]
Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Chem. Rev. 2015, 115 (21), 11559. doi: 10.1021/acs.chemrev.5b00155
-
[5]
Zhang, Z.; Song, J.; Han, B. Chem. Rev. 2017, 117 (10), 6834. doi: 10.1021/acs.chemrev.6b00457
-
[6]
Li, S.; Deng, W.; Wang, S.; Wang, P.; An, D.; Li, Y.; Zhang, Q.; Wang, Y. ChemSusChem 2018, 11 (13), 1995. doi: 10.1002/cssc.201800440
-
[7]
Li, S.; Deng, W.; Li, Y.; Zhang, Q.; Wang, Y. J. Energy Chem. 2019, 32, 138. doi: 10.1016/j.jechem.2018.07.012
-
[8]
Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Chem 2019, 5 (10), 2520. doi: 10.1016/j.chempr.2019.05.022
-
[9]
Wu, X.; Luo, N.; Xie, S.; Zhang, H.; Zhang, Q.; Wang, F.; Wang, Y. Chem. Soc. Rev. 2020, 49 (17), 6198. doi: 10.1039/d0cs00314j
-
[10]
Wong, S. S.; Shu, R.; Zhang, J.; Liu, H.; Yan, N. Chem. Soc. Rev. 2020, 49 (15), 5510. doi: 10.1039/d0cs00134a
-
[11]
He, M.; Sun, Y.; Han, B. Angew. Chem. Int. Ed. 2022, 61 (15), e202112835. doi: 10.1002/anie.202112835
-
[12]
Mika, L. T.; Csefalvay, E.; Nemeth, A. Chem. Rev. 2018, 118 (2), 505. doi: 10.1021/acs.chemrev.7b00395
-
[13]
Li, C.; Zhao, Z. K. Adv. Synth. Catal. 2007, 349 (11–12), 1847. doi: 10.1002/adsc.200700259
-
[14]
Li, C.; Wang, Q.; Zhao, Z. K. Green Chem. 2008, 10 (2), 177. doi: 10.1039/b711512a
-
[15]
Rinaldi, R.; Palkovits, R.; Schuth, F. Angew. Chem. Int. Ed. 2008, 47 (42), 8047. doi: 10.1002/anie.200802879
-
[16]
Song, H.; Wang, P.; Li, S.; Deng, W.; Li, Y.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55 (30), 4303. doi: 10.1039/c9cc00619b
-
[17]
Yang, M.; Qi, H.; Liu, F.; Ren, Y.; Pan, X.; Zhang, L.; Liu, X.; Wang, H.; Pang, J.; Zheng, M.; et al. Joule 2019, 3 (8), 1937. doi: 10.1016/j.joule.2019.05.020
-
[18]
Li, C.; Xu, G.; Wang, C.; Ma, L.; Qiao, Y.; Zhang, Y.; Fu, Y. Green Chem. 2019, 21 (9), 2234. doi: 10.1039/c9gc00719a
-
[19]
Liu, Q.; Wang, H.; Xin, H.; Wang, C.; Yan, L.; Wang, Y.; Zhang, Q.; Zhang, X.; Xu, Y.; Huber, G. W.; et al. ChemSusChem 2019, 12 (17), 3977. doi: 10.1002/cssc.201901110
-
[20]
Xia, Q.; Chen, Z.; Shao, Y.; Gong, X.; Wang, H.; Liu, X.; Parker, S. F.; Han, X.; Yang, S.; Wang, Y. Nat. Commun. 2016, 7, 11162. doi: 10.1038/ncomms11162
-
[21]
Xu, C.; Paone, E.; Rodriguez-Padron, D.; Luque, R.; Mauriello, F. Chem. Soc. Rev. 2020, 49 (13), 4273. doi: 10.1039/d0cs00041h
-
[22]
Subramani, V.; Gangwal, S. K. Energy Fuels 2008, 22 (2), 814. doi: 10.1021/ef700411x
-
[23]
Kennes, D.; Abubackar, H. N.; Diaz, M.; Veiga, M. C.; Kennes, C. J. Chem. Technol. Biotechnol. 2016, 91 (2), 304. doi: 10.1002/jctb.4842
-
[24]
Xu, G.; Wang, A.; Pang, J.; Zhao, X.; Xu, J.; Lei, N.; Wang, J.; Zheng, M.; Yin, J.; Zhang, T. ChemSusChem 2017, 10 (7), 1390. doi: 10.1002/cssc.201601714
-
[25]
Yang, C.; Miao, Z.; Zhang, F.; Li, L.; Liu, Y.; Wang, A.; Zhang, T. Green Chem. 2018, 20 (9), 2142. doi: 10.1039/c8gc00309b
-
[26]
Luo, C.; Wang, S.; Liu, H. Angew. Chem. Int. Ed. 2007, 46 (40), 7636. doi: 10.1002/anie.200702661
-
[27]
Wu, Y.; Dong, C.; Wang, H.; Peng, J.; Li, Y.; Samart, C.; Ding, M. ACS Sustainable Chem. Eng. 2022, 10 (8), 2802. doi: 10.1021/acssuschemeng.1c08204
-
[28]
Chu, D.; Luo, Z.; Xin, Y.; Jiang, C.; Gao, S.; Wang, Z.; Zhao, C. Fuel 2021, 292, 120311. doi: 10.1016/j.fuel.2021.120311
-
[29]
Chapman, G., Jr.; Nicholas, K. M. Chem. Commun. 2013, 49 (74), 8199. doi: 10.1039/c3cc44656e
-
[30]
Shiramizu, M.; Toste, F. D. Angew. Chem. Int. Ed. 2013, 52 (49), 12905. doi: 10.1002/anie.201307564
-
[31]
Li, X.; Wu, D.; Lu, T.; Yi, G.; Su, H.; Zhang, Y. Angew. Chem. Int. Ed. 2014, 53 (16), 4200. doi: 10.1002/anie.201310991
-
[32]
Gopaladasu, T. V.; Nicholas, K. M. ACS Catal. 2016, 6 (3), 1901. doi: 10.1021/acscatal.5b02667
-
[33]
Raju, S.; Moret, M. -E.; Klein Gebbink, R. J. M. ACS Catal. 2014, 5 (1), 281. doi: 10.1021/cs501511x
-
[34]
Dethlefsen, J. R.; Fristrup, P. ChemSusChem 2015, 8 (5), 767. doi: 10.1002/cssc.201402987
-
[35]
Denning, A. L.; Dang, H.; Liu, Z.; Nicholas, K. M.; Jentoft, F. C. ChemCatChem 2013, 5 (12), 3567. doi: 10.1002/cctc.201300545
-
[36]
Sandbrink, L.; Klindtworth, E.; Islam, H. -U.; Beale, A. M.; Palkovits, R. ACS Catal. 2015, 6 (2), 677. doi: 10.1021/acscatal.5b01936
-
[37]
Jang, J. H.; Sohn, H.; Camacho-Bunquin, J.; Yang, D.; Park, C. Y.; Delferro, M.; Abu-Omar, M. M. ACS Sustainable Chem. Eng. 2019, 7 (13), 11438. doi: 10.1021/acssuschemeng.9b01253
-
[38]
Meiners, I.; Louven, Y.; Palkovits, R. ChemCatChem 2021, 13 (10), 2393. doi: 10.1002/cctc.202100277
-
[39]
Tazawa, S.; Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2016, 6 (10), 6393. doi: 10.1021/acscatal.6b01864
-
[40]
Nakagawa, Y.; Tazawa, S.; Wang, T.; Tamura, M.; Hiyoshi, N.; Okumura, K.; Tomishige, K. ACS Catal. 2017, 8 (1), 584. doi: 10.1021/acscatal.7b02879
-
[41]
Cao, J.; Tamura, M.; Nakagawa, Y.; Tomishige, K. ACS Catal. 2019, 9 (4), 3725. doi: 10.1021/acscatal.9b00589
-
[42]
Yamaguchi, K.; Cao, J.; Betchaku, M.; Nakagawa, Y.; Tamura, M.; Nakayama, A.; Yabushita, M.; Tomishige, K. ChemSusChem 2022, e202102663. doi: 10.1002/cssc.202102663
-
[43]
Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. Angew. Chem. Int. Ed. 2015, 54 (6), 1897. doi: 10.1002/anie.201410352
-
[44]
Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2016, 6 (5), 3213. doi: 10.1021/acscatal.6b00491
-
[45]
Tamura, M.; Yuasa, N.; Cao, J.; Nakagawa, Y.; Tomishige, K. Angew. Chem. Int. Ed. 2018, 57 (27), 8058. doi: 10.1002/anie.201803043
-
[46]
Larson, R. T.; Samant, A.; Chen, J.; Lee, W.; Bohn, M. A.; Ohlmann, D. M.; Zuend, S. J.; Toste, F. D. J. Am. Chem. Soc. 2017, 139 (40), 14001. doi: 10.1021/jacs.7b07801
-
[47]
Lin, J.; Song, H.; Shen, X.; Wang, B.; Xie, S.; Deng, W.; Wu, D.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55 (74), 11017. doi: 10.1039/c9cc05413h
-
[48]
Deng, W.; Yan, L.; Wang, B.; Zhang, Q.; Song, H.; Wang, S.; Zhang, Q.; Wang, Y. Angew. Chem. Int. Ed. 2021, 60 (9), 4712. doi: 10.1002/anie.202013843
-
[49]
Roman-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Nature 2007, 447 (7147), 982. doi: 10.1038/nature05923
-
[50]
Hu, L.; Tang, X.; Xu, J.; Wu, Z.; Lin, L.; Liu, S. Ind. Eng. Chem. Res. 2014, 53 (8), 3056. doi: 10.1021/ie404441a
-
[51]
Huang, Y. B.; Chen, M. Y.; Yan, L.; Guo, Q. X.; Fu, Y. ChemSusChem 2014, 7 (4), 1068. doi: 10.1002/cssc.201301356
-
[52]
Luo, J.; Arroyo‐Ramírez, L.; Gorte, R. J.; Tzoulaki, D.; Vlachos, D. G. AIChE J. 2014, 61 (2), 590. doi: 10.1002/aic.14660
-
[53]
Lin, Z.; Wan, W.; Yao, S.; Chen, J. G. Appl. Catal. B-Environ. 2018, 233, 160. doi: 10.1016/j.apcatb.2018.03.113
-
[54]
Deng, Y.; Gao, R.; Lin, L.; Liu, T.; Wen, X. D.; Wang, S.; Ma, D. J. Am. Chem. Soc. 2018, 140 (43), 14481. doi: 10.1021/jacs.8b09310
-
[55]
Thananatthanachon, T.; Rauchfuss, T. B. Angew. Chem. Int. Ed. 2010, 49 (37), 6616. doi: 10.1002/anie.201002267
-
[56]
Saha, B.; Bohn, C. M.; Abu-Omar, M. M. ChemSusChem 2014, 7 (11), 3095. doi: 10.1002/cssc.201402530
-
[57]
Li, J.; Liu, J. L.; Liu, H. Y.; Xu, G. Y.; Zhang, J. J.; Liu, J. X.; Zhou, G. L.; Li, Q.; Xu, Z. H.; Fu, Y. ChemSusChem 2017, 10 (7), 1436. doi: 10.1002/cssc.201700105
-
[58]
Chimentão, R. J.; Oliva, H.; Belmar, J.; Morales, K.; Mäki-Arvela, P.; Wärnå, J.; Murzin, D. Y.; Fierro, J. L. G.; Llorca, J.; Ruiz, D. Appl. Catal. B-Environ. 2019, 241, 270. doi: 10.1016/j.apcatb.2018.09.026
-
[59]
Yang, Y.; Liu, H.; Li, S.; Chen, C.; Wu, T.; Mei, Q.; Wang, Y.; Chen, B.; Liu, H.; Han, B. ACS Sustainable Chem. Eng. 2019, 7 (6), 5711. doi: 10.1021/acssuschemeng.8b04937
-
[60]
Yang, F.; Mao, J.; Li, S.; Yin, J.; Zhou, J.; Liu, W. Catal. Sci. Technol. 2019, 9 (6), 1329. doi: 10.1039/c9cy00330d
-
[61]
Li, C.; Cai, H.; Zhang, B.; Li, W.; Pei, G.; Dai, T.; Wang, A.; Zhang, T. Chin. J. Catal. 2015, 36 (9), 1638. doi: 10.1016/s1872-2067(15)60927-5
-
[62]
Wang, Q.; Guan, X.; Kang, L.; Wang, B.; Sheng, L.; Wang, F. R. ACS Appl. Mater. Interfaces 2020, 12, 53712. doi: 10.1021/acsami.0c11888
-
[63]
Yu, L.; He, L.; Chen, J.; Zheng, J.; Ye, L.; Lin, H.; Yuan, Y. ChemCatChem 2015, 7 (11), 1701. doi: 10.1002/cctc.201500097
-
[64]
Solanki, B. S.; Rode, C. V. Green Chem. 2019, 21 (23), 6390. doi: 10.1039/c9gc03091c
-
[65]
Wang, G. H.; Hilgert, J.; Richter, F. H.; Wang, F.; Bongard, H. J.; Spliethoff, B.; Weidenthaler, C.; Schuth, F. Nat. Mater. 2014, 13 (3), 293. doi: 10.1038/nmat3872
-
[66]
Zu, Y.; Yang, P.; Wang, J.; Liu, X.; Ren, J.; Lu, G.; Wang, Y. Appl. Catal. B- Environ. 2014, 146, 244. doi: 10.1016/j.apcatb.2013.04.026
-
[67]
Guo, W.; Liu, H.; Zhang, S.; Han, H.; Liu, H.; Jiang, T.; Han, B.; Wu, T. Green Chem. 2016, 18 (23), 6222. doi: 10.1039/c6gc02630c
-
[68]
Yang, P.; Xia, Q.; Liu, X.; Wang, Y. J. Energy. Chem. 2016, 25 (6), 1015. doi: 10.1016/j.jechem.2016.08.008
-
[69]
Chang, X.; Liu, A. F.; Cai, B.; Luo, J. Y.; Pan, H.; Huang, Y. B. ChemSusChem 2016, 9 (23), 3330. doi: 10.1002/cssc.201601122
-
[70]
Luo, J.; Yun, H.; Mironenko, A. V.; Goulas, K.; Lee, J. D.; Monai, M.; Wang, C.; Vorotnikov, V.; Murray, C. B.; Vlachos, D. G.; et al. ACS Catal. 2016, 6 (7), 4095. doi: 10.1021/acscatal.6b00750
-
[71]
Luo, J.; Lee, J. D.; Yun, H.; Wang, C.; Monai, M.; Murray, C. B.; Fornasiero, P.; Gorte, R. J. Appl. Catal. B-Environ. 2016, 199, 439. doi: 10.1016/j.apcatb.2016.06.051
-
[72]
Srivastava, S.; Jadeja, G. C.; Parikh, J. Chin. J. Catal. 2017, 38 (4), 699. doi: 10.1016/s1872-2067(17)62789-x
-
[73]
Luo, J.; Monai, M.; Wang, C.; Lee, J. D.; Duchoň, T.; Dvořák, F.; Matolín, V.; Murray, C. B.; Fornasiero, P.; Gorte, R. J. Catal. Sci. Technol. 2017, 7 (8), 1735. doi: 10.1039/c6cy02647h
-
[74]
Gao, Z.; Fan, G.; Liu, M.; Yang, L.; Li, F. Appl. Catal. B-Environ. 2018, 237, 649. doi: 10.1016/j.apcatb.2018.06.026
-
[75]
Li, J.; Song, Z.; Hou, Y.; Li, Z.; Xu, C.; Liu, C. L.; Dong, W. S. ACS Appl. Mater. Interfaces 2019, 11 (13), 12481. doi: 10.1021/acsami.8b22183
-
[76]
Zhang, Z.; Yao, S.; Wang, C.; Liu, M.; Zhang, F.; Hu, X.; Chen, H.; Gou, X.; Chen, K.; Zhu, Y.; et al. J. Catal. 2019, 373, 314. doi: 10.1016/j.jcat.2019.04.011
-
[77]
Mhadmhan, S.; Franco, A.; Pineda, A.; Reubroycharoen, P.; Luque, R. ACS Sustainable Chem. Eng. 2019, 7 (16), 14210. doi: 10.1021/acssuschemeng.9b03017
-
[78]
Wang, Q.; Feng, J.; Zheng, L.; Wang, B.; Bi, R.; He, Y.; Liu, H.; Li, D. ACS Catal. 2019, 10 (2), 1353. doi: 10.1021/acscatal.9b03630
-
[79]
Gan, T.; Liu, Y.; He, Q.; Zhang, H.; He, X.; Ji, H. ACS Sustainable Chem. Eng. 2020, 8 (23), 8692. doi: 10.1021/acssuschemeng.0c02065
-
[80]
Li, S.; Dong, M.; Peng, M.; Mei, Q.; Wang, Y.; Yang, J.; Yang, Y.; Chen, B.; Liu, S.; Xiao, D.; et al. The Innov. 2022, 3 (1), 100189. doi: 10.1016/j.xinn.2021.100189
-
[81]
Buntara, T.; Noel, S.; Phua, P. H.; Melian-Cabrera, I.; de Vries, J. G.; Heeres, H. J. Angew. Chem. Int. Ed. 2011, 50 (31), 7083. doi: 10.1002/anie.201102156
-
[82]
Chia, M.; Pagan-Torres, Y. J.; Hibbitts, D.; Tan, Q.; Pham, H. N.; Datye, A. K.; Neurock, M.; Davis, R. J.; Dumesic, J. A. J. Am. Chem. Soc. 2011, 133 (32), 12675. doi: 10.1021/ja2038358
-
[83]
Buntara, T.; Noel, S.; Phua, P. H.; Melián-Cabrera, I.; de Vries, J. G.; Heeres, H. J. Top. Catal. 2012, 55 (7–10), 612. doi: 10.1007/s11244-012-9839-6
-
[84]
He, J.; Burt, S. P.; Ball, M.; Zhao, D.; Hermans, I.; Dumesic, J. A.; Huber, G. W. ACS Catal. 2018, 8 (2), 1427. doi: 10.1021/acscatal.7b03593
-
[85]
He, J.; Burt, S. P.; Ball, M. R.; Hermans, I.; Dumesic, J. A.; Huber, G. W. Appl. Catal. B-Environ. 2019, 258, 117945. doi: 10.1016/j.apcatb.2019.117945
-
[86]
Xiao, B.; Zheng, M.; Li, X.; Pang, J.; Sun, R.; Wang, H.; Pang, X.; Wang, A.; Wang, X.; Zhang, T. Green Chem. 2016, 18 (7), 2175. doi: 10.1039/c5gc02228b
-
[87]
Tuteja, J.; Choudhary, H.; Nishimura, S.; Ebitani, K. ChemSusChem 2014, 7 (1), 96. doi: 10.1002/cssc.201300832
-
[88]
Boussie, T. R.; Dias, E. L.; Fresco, Z. M.; Murphy, V. J. Production of Adipic Acid and Derivatives from Carbohydrate- Containing Materials. US Patent 0317822 A1, 2010.
-
[89]
Gilkey, M. J.; Mironenko, A. V.; Vlachos, D. G.; Xu, B. ACS Catal. 2017, 7 (10), 6619. doi: 10.1021/acscatal.7b01753
-
[90]
Gilkey, M. J.; Balakumar, R.; Vlachos, D. G.; Xu, B. Catal. Sci. Technol. 2018, 8 (10), 2661. doi: 10.1039/c8cy00379c
-
[91]
Vy Tran, A.; Park, S. K.; Jin Lee, H.; Yong Kim, T.; Kim, Y.; Suh, Y. W.; Lee, K. Y.; Jin Kim, Y.; Baek, J. ChemSusChem 2022, e202200375. doi: 10.1002/cssc.202200375
-
[92]
Asano, T.; Tamura, M.; Nakagawa, Y.; Tomishige, K. ACS Sustainable Chem. Eng. 2016, 4 (12), 6253. doi: 10.1021/acssuschemeng.6b01640
-
[93]
Wei, L.; Zhang, J.; Deng, W.; Xie, S.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55 (55), 8013. doi: 10.1039/c9cc02877c
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 31
- 文章访问数: 1060
- HTML全文浏览量: 162

下载: