Heterogeneous Catalysis for Deoxygenation of Cellulose and Its Derivatives to Chemicals

Wei Wang Yao Wang Zixiang Zhan Tian Tan Weiping Deng Qinghong Zhang Ye Wang

Citation:  Wei Wang, Yao Wang, Zixiang Zhan, Tian Tan, Weiping Deng, Qinghong Zhang, Ye Wang. Heterogeneous Catalysis for Deoxygenation of Cellulose and Its Derivatives to Chemicals[J]. Acta Physico-Chimica Sinica, 2022, 38(10): 220503. doi: 10.3866/PKU.WHXB2022205032 shu

Heterogeneous Catalysis for Deoxygenation of Cellulose and Its Derivatives to Chemicals

    通讯作者: 邓卫平, dengwp@xmu.edu.cn
    王野, wangye@xmu.edu.cn
  • 基金项目:

    国家重点研发计划 2018YFB1501602

    国家自然科学基金 22121001

    国家自然科学基金 22172127

    国家自然科学基金 91945301

摘要: Biomass, as a renewable carbon resource in nature, has been considered as an ideal starting feedstock to produce various valuable chemicals, fuels, and materials, and thus, can help build a sustainable chemical industry. Because cellulose is one of the richest components in lignocellulosic biomass, the efficient transformation of cellulose plays a crucial role in biomass utilization. However, there are many oxygen-containing groups in cellulose, and therefore, the selective removal of particular functional groups from cellulose becomes an essential step in the synthesis of the chemicals or fuels that can meet the requirements set by current chemical industries. In the past decades, several efficient catalytic systems have been developed to selectively split the C―O bonds inside cellulose and its derivatives, thereby producing various valuable chemicals. In this review article, we highlight recent progress made in the selective deoxygenation of cellulose and its derived key platforms such as glucose and 5-hydroxymethyl furfural (HMF) into ethanol, dimethyl furfural (DMF), 1, 6-hexanediol (1, 6-HD), and adipic acid. The selection of these reactions is primarily because these chemicals are of great significance in chemical industries. More importantly, the formation of these chemicals represents the cleavage of different C―O bonds in biomass molecules. For instance, the synthesis of ethanol requires cleaving of only one C―O bond and two C―C bonds of the glucose unit inside cellulose. If two or more C―O bonds in the sugar or sugar acids are cleaved, olefins, oxygen-reduced sugars, and adipic acid will be attained. HMF has a furan ring linked by hydroxyl/carbonyl groups, and hence, either a furanic compound (e.g., DMF) or linear products (e.g., 1, 6-HD and adipic acid) can be synthesized by selective removal of hydroxyl/carbonyl oxygen or ring oxygen atoms. This article focuses on the selective cleavage of particular C―O bonds via heterogeneous catalysis. Efficient catalytic systems using hydrogenolysis and/or deoxydehydration strategies for these transformations are discussed. Moreover, the functions of typical catalysts and reaction mechanisms are presented to obtain insight into the C―O bond cleavage in these biomass molecules. Additionally, other factors such as reaction conditions that also influence the deoxygenation performance are analyzed. We hope that these knowledge gained on the catalytic deoxygenation of cellulose and its derived platforms will promote the rational design of effective strategies or catalysts in the future utilization of lignocellulosic biomass.

English

    1. [1]

      Huber, G. W.; Iborra, S.; Corma, A. Chem. Rev. 2006, 106, 4044. doi: 10.1021/cr068360d

    2. [2]

      Lin, Y. C.; Huber, G. W. Energy Environ. Sci. 2009, 2 (1), 68. doi: 10.1039/b814955k

    3. [3]

      Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Chem. Soc. Rev. 2012, 41 (24), 8075. doi: 10.1039/c2cs35188a

    4. [4]

      Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Chem. Rev. 2015, 115 (21), 11559. doi: 10.1021/acs.chemrev.5b00155

    5. [5]

      Zhang, Z.; Song, J.; Han, B. Chem. Rev. 2017, 117 (10), 6834. doi: 10.1021/acs.chemrev.6b00457

    6. [6]

      Li, S.; Deng, W.; Wang, S.; Wang, P.; An, D.; Li, Y.; Zhang, Q.; Wang, Y. ChemSusChem 2018, 11 (13), 1995. doi: 10.1002/cssc.201800440

    7. [7]

      Li, S.; Deng, W.; Li, Y.; Zhang, Q.; Wang, Y. J. Energy Chem. 2019, 32, 138. doi: 10.1016/j.jechem.2018.07.012

    8. [8]

      Jing, Y.; Guo, Y.; Xia, Q.; Liu, X.; Wang, Y. Chem 2019, 5 (10), 2520. doi: 10.1016/j.chempr.2019.05.022

    9. [9]

      Wu, X.; Luo, N.; Xie, S.; Zhang, H.; Zhang, Q.; Wang, F.; Wang, Y. Chem. Soc. Rev. 2020, 49 (17), 6198. doi: 10.1039/d0cs00314j

    10. [10]

      Wong, S. S.; Shu, R.; Zhang, J.; Liu, H.; Yan, N. Chem. Soc. Rev. 2020, 49 (15), 5510. doi: 10.1039/d0cs00134a

    11. [11]

      He, M.; Sun, Y.; Han, B. Angew. Chem. Int. Ed. 2022, 61 (15), e202112835. doi: 10.1002/anie.202112835

    12. [12]

      Mika, L. T.; Csefalvay, E.; Nemeth, A. Chem. Rev. 2018, 118 (2), 505. doi: 10.1021/acs.chemrev.7b00395

    13. [13]

      Li, C.; Zhao, Z. K. Adv. Synth. Catal. 2007, 349 (11–12), 1847. doi: 10.1002/adsc.200700259

    14. [14]

      Li, C.; Wang, Q.; Zhao, Z. K. Green Chem. 2008, 10 (2), 177. doi: 10.1039/b711512a

    15. [15]

      Rinaldi, R.; Palkovits, R.; Schuth, F. Angew. Chem. Int. Ed. 2008, 47 (42), 8047. doi: 10.1002/anie.200802879

    16. [16]

      Song, H.; Wang, P.; Li, S.; Deng, W.; Li, Y.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55 (30), 4303. doi: 10.1039/c9cc00619b

    17. [17]

      Yang, M.; Qi, H.; Liu, F.; Ren, Y.; Pan, X.; Zhang, L.; Liu, X.; Wang, H.; Pang, J.; Zheng, M.; et al. Joule 2019, 3 (8), 1937. doi: 10.1016/j.joule.2019.05.020

    18. [18]

      Li, C.; Xu, G.; Wang, C.; Ma, L.; Qiao, Y.; Zhang, Y.; Fu, Y. Green Chem. 2019, 21 (9), 2234. doi: 10.1039/c9gc00719a

    19. [19]

      Liu, Q.; Wang, H.; Xin, H.; Wang, C.; Yan, L.; Wang, Y.; Zhang, Q.; Zhang, X.; Xu, Y.; Huber, G. W.; et al. ChemSusChem 2019, 12 (17), 3977. doi: 10.1002/cssc.201901110

    20. [20]

      Xia, Q.; Chen, Z.; Shao, Y.; Gong, X.; Wang, H.; Liu, X.; Parker, S. F.; Han, X.; Yang, S.; Wang, Y. Nat. Commun. 2016, 7, 11162. doi: 10.1038/ncomms11162

    21. [21]

      Xu, C.; Paone, E.; Rodriguez-Padron, D.; Luque, R.; Mauriello, F. Chem. Soc. Rev. 2020, 49 (13), 4273. doi: 10.1039/d0cs00041h

    22. [22]

      Subramani, V.; Gangwal, S. K. Energy Fuels 2008, 22 (2), 814. doi: 10.1021/ef700411x

    23. [23]

      Kennes, D.; Abubackar, H. N.; Diaz, M.; Veiga, M. C.; Kennes, C. J. Chem. Technol. Biotechnol. 2016, 91 (2), 304. doi: 10.1002/jctb.4842

    24. [24]

      Xu, G.; Wang, A.; Pang, J.; Zhao, X.; Xu, J.; Lei, N.; Wang, J.; Zheng, M.; Yin, J.; Zhang, T. ChemSusChem 2017, 10 (7), 1390. doi: 10.1002/cssc.201601714

    25. [25]

      Yang, C.; Miao, Z.; Zhang, F.; Li, L.; Liu, Y.; Wang, A.; Zhang, T. Green Chem. 2018, 20 (9), 2142. doi: 10.1039/c8gc00309b

    26. [26]

      Luo, C.; Wang, S.; Liu, H. Angew. Chem. Int. Ed. 2007, 46 (40), 7636. doi: 10.1002/anie.200702661

    27. [27]

      Wu, Y.; Dong, C.; Wang, H.; Peng, J.; Li, Y.; Samart, C.; Ding, M. ACS Sustainable Chem. Eng. 2022, 10 (8), 2802. doi: 10.1021/acssuschemeng.1c08204

    28. [28]

      Chu, D.; Luo, Z.; Xin, Y.; Jiang, C.; Gao, S.; Wang, Z.; Zhao, C. Fuel 2021, 292, 120311. doi: 10.1016/j.fuel.2021.120311

    29. [29]

      Chapman, G., Jr.; Nicholas, K. M. Chem. Commun. 2013, 49 (74), 8199. doi: 10.1039/c3cc44656e

    30. [30]

      Shiramizu, M.; Toste, F. D. Angew. Chem. Int. Ed. 2013, 52 (49), 12905. doi: 10.1002/anie.201307564

    31. [31]

      Li, X.; Wu, D.; Lu, T.; Yi, G.; Su, H.; Zhang, Y. Angew. Chem. Int. Ed. 2014, 53 (16), 4200. doi: 10.1002/anie.201310991

    32. [32]

      Gopaladasu, T. V.; Nicholas, K. M. ACS Catal. 2016, 6 (3), 1901. doi: 10.1021/acscatal.5b02667

    33. [33]

      Raju, S.; Moret, M. -E.; Klein Gebbink, R. J. M. ACS Catal. 2014, 5 (1), 281. doi: 10.1021/cs501511x

    34. [34]

      Dethlefsen, J. R.; Fristrup, P. ChemSusChem 2015, 8 (5), 767. doi: 10.1002/cssc.201402987

    35. [35]

      Denning, A. L.; Dang, H.; Liu, Z.; Nicholas, K. M.; Jentoft, F. C. ChemCatChem 2013, 5 (12), 3567. doi: 10.1002/cctc.201300545

    36. [36]

      Sandbrink, L.; Klindtworth, E.; Islam, H. -U.; Beale, A. M.; Palkovits, R. ACS Catal. 2015, 6 (2), 677. doi: 10.1021/acscatal.5b01936

    37. [37]

      Jang, J. H.; Sohn, H.; Camacho-Bunquin, J.; Yang, D.; Park, C. Y.; Delferro, M.; Abu-Omar, M. M. ACS Sustainable Chem. Eng. 2019, 7 (13), 11438. doi: 10.1021/acssuschemeng.9b01253

    38. [38]

      Meiners, I.; Louven, Y.; Palkovits, R. ChemCatChem 2021, 13 (10), 2393. doi: 10.1002/cctc.202100277

    39. [39]

      Tazawa, S.; Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2016, 6 (10), 6393. doi: 10.1021/acscatal.6b01864

    40. [40]

      Nakagawa, Y.; Tazawa, S.; Wang, T.; Tamura, M.; Hiyoshi, N.; Okumura, K.; Tomishige, K. ACS Catal. 2017, 8 (1), 584. doi: 10.1021/acscatal.7b02879

    41. [41]

      Cao, J.; Tamura, M.; Nakagawa, Y.; Tomishige, K. ACS Catal. 2019, 9 (4), 3725. doi: 10.1021/acscatal.9b00589

    42. [42]

      Yamaguchi, K.; Cao, J.; Betchaku, M.; Nakagawa, Y.; Tamura, M.; Nakayama, A.; Yabushita, M.; Tomishige, K. ChemSusChem 2022, e202102663. doi: 10.1002/cssc.202102663

    43. [43]

      Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. Angew. Chem. Int. Ed. 2015, 54 (6), 1897. doi: 10.1002/anie.201410352

    44. [44]

      Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2016, 6 (5), 3213. doi: 10.1021/acscatal.6b00491

    45. [45]

      Tamura, M.; Yuasa, N.; Cao, J.; Nakagawa, Y.; Tomishige, K. Angew. Chem. Int. Ed. 2018, 57 (27), 8058. doi: 10.1002/anie.201803043

    46. [46]

      Larson, R. T.; Samant, A.; Chen, J.; Lee, W.; Bohn, M. A.; Ohlmann, D. M.; Zuend, S. J.; Toste, F. D. J. Am. Chem. Soc. 2017, 139 (40), 14001. doi: 10.1021/jacs.7b07801

    47. [47]

      Lin, J.; Song, H.; Shen, X.; Wang, B.; Xie, S.; Deng, W.; Wu, D.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55 (74), 11017. doi: 10.1039/c9cc05413h

    48. [48]

      Deng, W.; Yan, L.; Wang, B.; Zhang, Q.; Song, H.; Wang, S.; Zhang, Q.; Wang, Y. Angew. Chem. Int. Ed. 2021, 60 (9), 4712. doi: 10.1002/anie.202013843

    49. [49]

      Roman-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Nature 2007, 447 (7147), 982. doi: 10.1038/nature05923

    50. [50]

      Hu, L.; Tang, X.; Xu, J.; Wu, Z.; Lin, L.; Liu, S. Ind. Eng. Chem. Res. 2014, 53 (8), 3056. doi: 10.1021/ie404441a

    51. [51]

      Huang, Y. B.; Chen, M. Y.; Yan, L.; Guo, Q. X.; Fu, Y. ChemSusChem 2014, 7 (4), 1068. doi: 10.1002/cssc.201301356

    52. [52]

      Luo, J.; Arroyo‐Ramírez, L.; Gorte, R. J.; Tzoulaki, D.; Vlachos, D. G. AIChE J. 2014, 61 (2), 590. doi: 10.1002/aic.14660

    53. [53]

      Lin, Z.; Wan, W.; Yao, S.; Chen, J. G. Appl. Catal. B-Environ. 2018, 233, 160. doi: 10.1016/j.apcatb.2018.03.113

    54. [54]

      Deng, Y.; Gao, R.; Lin, L.; Liu, T.; Wen, X. D.; Wang, S.; Ma, D. J. Am. Chem. Soc. 2018, 140 (43), 14481. doi: 10.1021/jacs.8b09310

    55. [55]

      Thananatthanachon, T.; Rauchfuss, T. B. Angew. Chem. Int. Ed. 2010, 49 (37), 6616. doi: 10.1002/anie.201002267

    56. [56]

      Saha, B.; Bohn, C. M.; Abu-Omar, M. M. ChemSusChem 2014, 7 (11), 3095. doi: 10.1002/cssc.201402530

    57. [57]

      Li, J.; Liu, J. L.; Liu, H. Y.; Xu, G. Y.; Zhang, J. J.; Liu, J. X.; Zhou, G. L.; Li, Q.; Xu, Z. H.; Fu, Y. ChemSusChem 2017, 10 (7), 1436. doi: 10.1002/cssc.201700105

    58. [58]

      Chimentão, R. J.; Oliva, H.; Belmar, J.; Morales, K.; Mäki-Arvela, P.; Wärnå, J.; Murzin, D. Y.; Fierro, J. L. G.; Llorca, J.; Ruiz, D. Appl. Catal. B-Environ. 2019, 241, 270. doi: 10.1016/j.apcatb.2018.09.026

    59. [59]

      Yang, Y.; Liu, H.; Li, S.; Chen, C.; Wu, T.; Mei, Q.; Wang, Y.; Chen, B.; Liu, H.; Han, B. ACS Sustainable Chem. Eng. 2019, 7 (6), 5711. doi: 10.1021/acssuschemeng.8b04937

    60. [60]

      Yang, F.; Mao, J.; Li, S.; Yin, J.; Zhou, J.; Liu, W. Catal. Sci. Technol. 2019, 9 (6), 1329. doi: 10.1039/c9cy00330d

    61. [61]

      Li, C.; Cai, H.; Zhang, B.; Li, W.; Pei, G.; Dai, T.; Wang, A.; Zhang, T. Chin. J. Catal. 2015, 36 (9), 1638. doi: 10.1016/s1872-2067(15)60927-5

    62. [62]

      Wang, Q.; Guan, X.; Kang, L.; Wang, B.; Sheng, L.; Wang, F. R. ACS Appl. Mater. Interfaces 2020, 12, 53712. doi: 10.1021/acsami.0c11888

    63. [63]

      Yu, L.; He, L.; Chen, J.; Zheng, J.; Ye, L.; Lin, H.; Yuan, Y. ChemCatChem 2015, 7 (11), 1701. doi: 10.1002/cctc.201500097

    64. [64]

      Solanki, B. S.; Rode, C. V. Green Chem. 2019, 21 (23), 6390. doi: 10.1039/c9gc03091c

    65. [65]

      Wang, G. H.; Hilgert, J.; Richter, F. H.; Wang, F.; Bongard, H. J.; Spliethoff, B.; Weidenthaler, C.; Schuth, F. Nat. Mater. 2014, 13 (3), 293. doi: 10.1038/nmat3872

    66. [66]

      Zu, Y.; Yang, P.; Wang, J.; Liu, X.; Ren, J.; Lu, G.; Wang, Y. Appl. Catal. B- Environ. 2014, 146, 244. doi: 10.1016/j.apcatb.2013.04.026

    67. [67]

      Guo, W.; Liu, H.; Zhang, S.; Han, H.; Liu, H.; Jiang, T.; Han, B.; Wu, T. Green Chem. 2016, 18 (23), 6222. doi: 10.1039/c6gc02630c

    68. [68]

      Yang, P.; Xia, Q.; Liu, X.; Wang, Y. J. Energy. Chem. 2016, 25 (6), 1015. doi: 10.1016/j.jechem.2016.08.008

    69. [69]

      Chang, X.; Liu, A. F.; Cai, B.; Luo, J. Y.; Pan, H.; Huang, Y. B. ChemSusChem 2016, 9 (23), 3330. doi: 10.1002/cssc.201601122

    70. [70]

      Luo, J.; Yun, H.; Mironenko, A. V.; Goulas, K.; Lee, J. D.; Monai, M.; Wang, C.; Vorotnikov, V.; Murray, C. B.; Vlachos, D. G.; et al. ACS Catal. 2016, 6 (7), 4095. doi: 10.1021/acscatal.6b00750

    71. [71]

      Luo, J.; Lee, J. D.; Yun, H.; Wang, C.; Monai, M.; Murray, C. B.; Fornasiero, P.; Gorte, R. J. Appl. Catal. B-Environ. 2016, 199, 439. doi: 10.1016/j.apcatb.2016.06.051

    72. [72]

      Srivastava, S.; Jadeja, G. C.; Parikh, J. Chin. J. Catal. 2017, 38 (4), 699. doi: 10.1016/s1872-2067(17)62789-x

    73. [73]

      Luo, J.; Monai, M.; Wang, C.; Lee, J. D.; Duchoň, T.; Dvořák, F.; Matolín, V.; Murray, C. B.; Fornasiero, P.; Gorte, R. J. Catal. Sci. Technol. 2017, 7 (8), 1735. doi: 10.1039/c6cy02647h

    74. [74]

      Gao, Z.; Fan, G.; Liu, M.; Yang, L.; Li, F. Appl. Catal. B-Environ. 2018, 237, 649. doi: 10.1016/j.apcatb.2018.06.026

    75. [75]

      Li, J.; Song, Z.; Hou, Y.; Li, Z.; Xu, C.; Liu, C. L.; Dong, W. S. ACS Appl. Mater. Interfaces 2019, 11 (13), 12481. doi: 10.1021/acsami.8b22183

    76. [76]

      Zhang, Z.; Yao, S.; Wang, C.; Liu, M.; Zhang, F.; Hu, X.; Chen, H.; Gou, X.; Chen, K.; Zhu, Y.; et al. J. Catal. 2019, 373, 314. doi: 10.1016/j.jcat.2019.04.011

    77. [77]

      Mhadmhan, S.; Franco, A.; Pineda, A.; Reubroycharoen, P.; Luque, R. ACS Sustainable Chem. Eng. 2019, 7 (16), 14210. doi: 10.1021/acssuschemeng.9b03017

    78. [78]

      Wang, Q.; Feng, J.; Zheng, L.; Wang, B.; Bi, R.; He, Y.; Liu, H.; Li, D. ACS Catal. 2019, 10 (2), 1353. doi: 10.1021/acscatal.9b03630

    79. [79]

      Gan, T.; Liu, Y.; He, Q.; Zhang, H.; He, X.; Ji, H. ACS Sustainable Chem. Eng. 2020, 8 (23), 8692. doi: 10.1021/acssuschemeng.0c02065

    80. [80]

      Li, S.; Dong, M.; Peng, M.; Mei, Q.; Wang, Y.; Yang, J.; Yang, Y.; Chen, B.; Liu, S.; Xiao, D.; et al. The Innov. 2022, 3 (1), 100189. doi: 10.1016/j.xinn.2021.100189

    81. [81]

      Buntara, T.; Noel, S.; Phua, P. H.; Melian-Cabrera, I.; de Vries, J. G.; Heeres, H. J. Angew. Chem. Int. Ed. 2011, 50 (31), 7083. doi: 10.1002/anie.201102156

    82. [82]

      Chia, M.; Pagan-Torres, Y. J.; Hibbitts, D.; Tan, Q.; Pham, H. N.; Datye, A. K.; Neurock, M.; Davis, R. J.; Dumesic, J. A. J. Am. Chem. Soc. 2011, 133 (32), 12675. doi: 10.1021/ja2038358

    83. [83]

      Buntara, T.; Noel, S.; Phua, P. H.; Melián-Cabrera, I.; de Vries, J. G.; Heeres, H. J. Top. Catal. 2012, 55 (7–10), 612. doi: 10.1007/s11244-012-9839-6

    84. [84]

      He, J.; Burt, S. P.; Ball, M.; Zhao, D.; Hermans, I.; Dumesic, J. A.; Huber, G. W. ACS Catal. 2018, 8 (2), 1427. doi: 10.1021/acscatal.7b03593

    85. [85]

      He, J.; Burt, S. P.; Ball, M. R.; Hermans, I.; Dumesic, J. A.; Huber, G. W. Appl. Catal. B-Environ. 2019, 258, 117945. doi: 10.1016/j.apcatb.2019.117945

    86. [86]

      Xiao, B.; Zheng, M.; Li, X.; Pang, J.; Sun, R.; Wang, H.; Pang, X.; Wang, A.; Wang, X.; Zhang, T. Green Chem. 2016, 18 (7), 2175. doi: 10.1039/c5gc02228b

    87. [87]

      Tuteja, J.; Choudhary, H.; Nishimura, S.; Ebitani, K. ChemSusChem 2014, 7 (1), 96. doi: 10.1002/cssc.201300832

    88. [88]

      Boussie, T. R.; Dias, E. L.; Fresco, Z. M.; Murphy, V. J. Production of Adipic Acid and Derivatives from Carbohydrate- Containing Materials. US Patent 0317822 A1, 2010.

    89. [89]

      Gilkey, M. J.; Mironenko, A. V.; Vlachos, D. G.; Xu, B. ACS Catal. 2017, 7 (10), 6619. doi: 10.1021/acscatal.7b01753

    90. [90]

      Gilkey, M. J.; Balakumar, R.; Vlachos, D. G.; Xu, B. Catal. Sci. Technol. 2018, 8 (10), 2661. doi: 10.1039/c8cy00379c

    91. [91]

      Vy Tran, A.; Park, S. K.; Jin Lee, H.; Yong Kim, T.; Kim, Y.; Suh, Y. W.; Lee, K. Y.; Jin Kim, Y.; Baek, J. ChemSusChem 2022, e202200375. doi: 10.1002/cssc.202200375

    92. [92]

      Asano, T.; Tamura, M.; Nakagawa, Y.; Tomishige, K. ACS Sustainable Chem. Eng. 2016, 4 (12), 6253. doi: 10.1021/acssuschemeng.6b01640

    93. [93]

      Wei, L.; Zhang, J.; Deng, W.; Xie, S.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55 (55), 8013. doi: 10.1039/c9cc02877c

  • 加载中
计量
  • PDF下载量:  31
  • 文章访问数:  1060
  • HTML全文浏览量:  162
文章相关
  • 发布日期:  2022-10-15
  • 收稿日期:  2022-05-14
  • 接受日期:  2022-06-01
  • 修回日期:  2022-05-31
  • 网络出版日期:  2022-06-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章