固态锂电池界面优化策略的研究进展

赵永智 陈晨阳 刘文燚 胡伟飞 刘金平

引用本文: 赵永智, 陈晨阳, 刘文燚, 胡伟飞, 刘金平. 固态锂电池界面优化策略的研究进展[J]. 物理化学学报, 2023, 39(8): 221101. doi: 10.3866/PKU.WHXB202211017 shu
Citation:  Yongzhi Zhao, Chenyang Chen, Wenyi Liu, Weifei Hu, Jinping Liu. Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(8): 221101. doi: 10.3866/PKU.WHXB202211017 shu

固态锂电池界面优化策略的研究进展

    通讯作者: 刘金平, liujp@whut.edu.cn
  • 基金项目:

    国家自然科学基金 51972257

    国家自然科学基金 52172229

    中央高校基本科研业务费专项资金 2022IVA197

摘要: 固态锂电池具有安全性好、能量密度高等优点,在新能源汽车和智能电子等领域具有广泛的应用前景。然而,由化学/电化学和物理因素引起的界面副反应与高界面阻抗问题制约了其进一步发展。先前的综述已对解决化学/电化学界面问题的方法有了相对全面的阐述,但并未细致讨论不同结构固态电池中物理界面的影响及应对策略。本文将简要介绍化学/电化学界面问题及其解决方案;重点按结构特点将固态锂电池分为三明治结构、粉末复合结构和3D一体化结构,细致地分析不同电池结构的物理界面特点与优化策略,并对各种策略的优缺点进行比较分析;最后,对固态锂电池电极/电解质界面的未来研究方向进行展望。

English

    1. [1]

      Liu, L.; Wu, Z. C.; Zheng, Z.; Zhou, Q. J.; Chen, K.; Yin, P. C. Chin. Chem. Lett. 2022, 33, 4326. doi: 10.1016/j.cclet.2021.12.031

    2. [2]

      Song, K. M.; Chen, W. H. Chem 2021, 7, 3195. doi: 10.1016/j.chempr.2021.11.016

    3. [3]

      Deysher, G.; Ridley, P.; Ham, S. Y.; Doux, J. M.; Chen, Y. T.; Wu, E. A.; Tan, D. H. S.; Cronk, A.; Jang, J.; Meng, Y. S. Mater. Today Phys. 2022, 24, 2542. doi: 10.1016/j.mtphys.2022.100679

    4. [4]

      Zhao, B. L.; Ma, L. X.; Wu, K.; Cao, M. X.; Xu, M. G.; Zhang, X. X.; Liu, W.; Chen, J. T. Chin. Chem. Lett. 2021, 32, 125. doi: 10.1016/j.cclet.2020.10.045

    5. [5]

      Zhao, T.; Li, S. W.; Liu, F.; Wang, Z. Q.; Wang, H. L.; Liu, Y. J.; Tang, X. Y.; Bai, M.; Zhang, M.; Ma, Y. Energy Storage Mater. 2022, 45, 796. doi: 10.1016/j.ensm.2021.12.032

    6. [6]

      Zhou, B. X.; Bonakdarpour, A.; Stosevski, I.; Fang, B. Z.; Wilkinson, D. P. Prog. Mater. Sci. 2022, 130, 79. doi: 10.1016/j.pmatsci.2022.100996

    7. [7]

      Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S. Chem. Rev. 2020, 120, 6878. doi: 10.1021/acs.chemrev.0c00101

    8. [8]

      王晗, 安汉文, 单红梅, 赵雷, 王家钧. 物理化学学报, 2021, 36, 2007070. doi: 10.3866/PKU.WHXB202007070Wang, H.; An, H, W.; Shan, H. M. .; Zhao, L.; Wang, J. J. Acta Phys. -Chim. Sin. 2021, 36, 2007070. doi: 10.3866/PKU.WHXB202007070

    9. [9]

      Zhang, Z. H.; Wu, L. P.; Zhou, D.; Weng, W.; Yao, X. Y. Nano Lett. 2021, 21, 5233. doi: 10.1021/acs.nanolett.1c01344

    10. [10]

      Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. Nat. Energy 2016, 1, 7. doi: 10.1038/nenergy.2016.30

    11. [11]

      Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. Nat. Mater. 2011, 10, 682. doi: 10.1038/nmat3066

    12. [12]

      Lu, Y.; Li, L.; Zhang, Q.; Niu, Z.Q.; Chen, J. Joule 2018, 2, 1747. doi: 10.1016/j.joule.2018.07.028

    13. [13]

      Wang, H. C.; Zhu, J. P.; Su, Y.; Gong, Z. L.; Yang, Y. Sci. China-Chem. 2021, 64, 879. doi: 10.1007/s11426-021-9985-x

    14. [14]

      Goodenough, J. B.; Kim, Y. Chem. Mat. 2010, 22, 587. doi: 10.1021/cm901452z

    15. [15]

      Wenzel, S.; Leichtweiss, T.; Kruger, D.; Sann, J.; Janek, J. Solid State Ion. 2015, 278, 98. doi: 10.1016/j.ssi.2015.06.001

    16. [16]

      Rehnlund, D.; Wang, Z. H.; Nyholm, L. Adv. Mater. 2022, 34, 2108827. doi: 10.1002/adma.202108827

    17. [17]

      Haruyama, J.; Sodeyama, K.; Tateyama, Y. ACS Appl. Mater. Interfaces 2017, 9, 286. doi: 10.1021/acsami.6b08435

    18. [18]

      Sakuda, A.; Hayashi, A.; Tatsumisago, M. Chem. Mat. 2010, 22, 949. doi: 10.1021/cm901819c

    19. [19]

      Park, K.; Yu, B. C.; Jung, J. W.; Li, Y. T.; Zhou, W. D.; Gao, H. C.; Son, S.; Goodenough, J. B. Chem. Mat. 2016, 28, 8051. doi: 10.1021/acs.chemmater.6b03870

    20. [20]

      Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Chem. Mat. 2016, 28, 266. doi: 10.1021/acs.chemmater.5b04082

    21. [21]

      Lu, G.; Geng, F.; Gu, S.; Li, C.; Shen, M.; Hu, B. ACS Appl. Mater. Interfaces 2022, 14, 25556. doi: 10.1021/acsami.2c05239

    22. [22]

      Cheng, Z.; Liu, M.; Ganapathy, S.; Li, C.; Li, Z. L.; Zhang, X. Y.; He, P.; Zhou, H. S.; Wagemaker, M. Joule 2020, 4, 131. doi: 10.1016/j.joule.2020.04.002

    23. [23]

      Liu, S. L.; Liu, W. Y.; Ba, D. L.; Zhao, Y. Z.; Ye, Y. H.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2022, 2110423. doi: 10.1002/adma.202110423

    24. [24]

      Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Energy Storage Mater. 2021, 38, 309. doi: 10.1016/j.ensm.2021.03.015

    25. [25]

      Kitsche, D.; Tang, Y. S.; Ma, Y.; Goonetilleke, D.; Sann, J.; Walther, F.; Bianchini, M.; Janek, J.; Brezesinski, T. ACS Appl. Energ. Mater. 2021, 4, 7338. doi: 10.1021/acsaem.1c01487

    26. [26]

      Ma, Y.; Teo, J. H.; Walther, F.; Ma, Y. J.; Zhang, R. Z.; Mazilkin, A.; Tang, Y. S.; Goonetilleke, D.; Janek, J.; Bianchini, M.; et al. Adv. Funct. Mater. 2022, 15, 2111829. doi: 10.1002/adfm.202111829

    27. [27]

      Peng, L. F.; Ren, H. T.; Zhang, J. Z.; Chen, S. J.; Yu, C.; Miao, X. F.; Zhang, Z. Q.; He, Z. Y.; Yu, M.; Zhang, L.; et al. Energy Storage Mater. 2021, 43, 53. doi: 10.1016/j.ensm.2021.08.028

    28. [28]

      Li, X.; Ren, Z. H.; Banis, M. N.; Deng, S. X.; Zhao, Y.; Sun, Q.; Wang, C. H.; Yang, X. F.; Li, W. H.; Liang, J. W.; et al. ACS Energy Lett. 2019, 4, 2480. doi: 10.1021/acsenergylett.9b01676

    29. [29]

      Liu, Y. L.; Sun, Q.; Liu, J. R.; Banis, M. N.; Zhao, Y.; Wang, B. Q.; Adair, K.; Hu, Y. F.; Xiao, Q. F.; Zhang, C.; et al. ACS Appl. Mater. Interfaces 2020, 12, 2293. doi: 10.1021/acsami.9b16343

    30. [30]

      Tsai, W. Y.; Thundat, T.; Nanda, J. Matter 2021, 4, 2119. doi: 10.1016/j.matt.2021.06.014

    31. [31]

      Gao, Y.; Du, X. Q.; Hou, Z.; Shen, X.; Mai, Y. W.; Tarascon, J. M.; Zhang, B. A. Joule 2021, 5, 1860. doi: 10.1016/j.joule.2021.05.015

    32. [32]

      Krauskopf, T.; Richter, F. H.; Zeier, W. G.; Janek, J. Chem. Rev. 2020, 120, 7745. doi: 10.1021/acs.chemrev.0c00431

    33. [33]

      Xu, B. Y.; Li, X. Y.; Yang, C.; Li, Y. T.; Grundish, N. S.; Chien, P. H.; Dong, K.; Manke, I.; Fang, R. Y.; Wu, N.; et al. J. Am. Chem. Soc. 2021, 143, 6542. doi: 10.1021/jacs.1c00752

    34. [34]

      Mi, J.S.; Ma, J.B.; Chen, L.K.; Lai, C.; Yang, K.; Biao, J.; Xia, H.Y.; Song, X.; Lv, W.; Zhong, G.M. Energy Storage Mater. 2022, 48, 375. doi: 10.1016/j.ensm.2022.02.048

    35. [35]

      Arrese-Igor, M.; Martinez-Ibanez, M.; Pavlenko, E.; Forsyth, M.; Zhu, H.; Armand, M.; Aguesse, F.; Lopez-Aranguren, P. ACS Energy Lett. 2022, 7, 1473. doi: 10.1021/acsenergylett.2c00488

    36. [36]

      Wang, P.; Qu, W. J.; Song, W. L.; Chen, H. S.; Chen, R. J.; Fang, D. N. Adv. Funct. Mater. 2019, 29, 29. doi: 10.1002/adfm.201900950

    37. [37]

      Tian, H. K.; Qi, Y. J. Electrochem. Soc. 2017, 16, 3512. doi: 10.1149/2.0481711jes

    38. [38]

      Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; Boston, R.; Corr, S. A.; De Volder, M. F. L.; Inkson, B. J.; Fleck, N. A. Joule 2022, 6, 984. doi: 10.1016/j.joule.2022.04.001

    39. [39]

      Liu, Y. Y.; Tzeng, Y. K.; Lin, D. C.; Pei, A.; Lu, H. Y.; Melosh, N. A.; Shen, Z. X.; Chu, S.; Cui, Y. Joule 2018, 2, 1595. doi: 10.1016/j.joule.2018.05.007

    40. [40]

      Kasemchainan, J.; Zekoll, S.; Jolly, D. S.; Ning, Z.; Hartley, G. O.; Marrow, J.; Bruce, P. G. Nat. Mater. 2019, 18, 1105. doi: 10.1038/s41563-019-0438-9

    41. [41]

      Yamada, H.; Ito, T.; Basappa, R. H.; Bekarevich, R.; Mitsuishi, K. J. Power Sources 2017, 368, 97. doi: 10.1016/j.jpowsour.2017.09.076

    42. [42]

      Zhang, W. B.; Schroder, D.; Arlt, T.; Manke, I.; Koerver, R.; Pinedo, R.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. J. Mater. Chem. A 2017, 5, 9929. doi: 10.1039/c7ta02730c

    43. [43]

      Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Zuo, T. T.; Yan, M.; Yin, Y. X.; Shi, J. L.; Wu, X. W.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2019, 141, 9165. doi: 10.1021/jacs.9b03517

    44. [44]

      Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2018, 14, 82. doi: 10.1021/jacs.7b10864

    45. [45]

      Wu, J. Y.; Ju, Z. Y.; Zhang, X.; Marschilok, A. C.; Takeuchi, K. J.; Wang, H. L.; Takeuchi, E. S.; Yu, G. H. Adv. Mater. 2022, 34, 2202780. doi: 10.1002/adma.202202780

    46. [46]

      Deng, C. L.; Chen, N.; Hou, C. Y.; Liu, H. X.; Zhou, Z. M.; Chen, R. J. Small 2021, 17, 9. doi: 10.1002/smll.202006578

    47. [47]

      Guo, S. J.; Li, Y. T.; Li, B.; Grundish, N. S.; Cao, A. M.; Sun, Y. G.; Xu, Y. S.; Ji, Y. L. M.; Qiao, Y.; Zhang, Q. H.; et al. J. Am. Chem. Soc. 2022, 144, 2179. doi: 10.1021/jacs.1c10872

    48. [48]

      Liu, Y. Q.; Wang, X.; Ghosh, S. K.; Zou, M.; Zhou, H.; Xiao, X. H.; Meng, X. B. Dalton Trans. 2022, 51, 2737. doi: 10.1039/d1dt03600a

    49. [49]

      Deng, T.; Ji, X.; Zhao, Y.; Cao, L. S.; Li, S.; Hwang, S.; Luo, C.; Wang, P. F.; Jia, H. P.; Fan, X. L.; et al. Adv. Mater. 2020, 32, 2000030. doi: 10.1002/adma.202000030

    50. [50]

      Shao, Y. J.; Wang, H. C.; Gong, Z. L.; Wang, D. W.; Zheng, B. Z.; Zhu, J. P.; Lu, Y. X.; Hu, Y. S.; Guo, X. X.; Li, H.; et al. ACS Energy Lett. 2018, 3, 1212. doi: 10.1021/acsenergylett.8b00453

    51. [51]

      赵江辉, 谢茂玲, 张海洋, 易若玮, 胡晨吉, 康拓, 郑磊, 崔瑞广, 陈宏伟, 沈炎宾, 等. 物理化学学报, 2021, 37, 2104003. doi: 10.3866/PKU.WHXB202104003Zhao, J. H.; Xie, M. L.; Zhang, H. Y.; Yi, R. W.; Hu, C. J.; Kang, T.; Zheng, L.; Cui, R. G.; Chen, H. W.; Shen, Y. B.; et al. Acta Phys. -Chim. Sin. 2021, 37, 2104003. doi: 10.3866/PKU.WHXB202104003

    52. [52]

      Strauss, F.; Bartsch, T.; de Biasi, L.; Kim, A. Y.; Janek, J.; Hartmann, P.; Brezesinski, T. ACS Energy Lett. 2018, 3, 992. doi: 10.1021/acsenergylett.8b00275

    53. [53]

      Shi, T.; Tu, Q. S.; Tian, Y. S.; Xiao, Y. H.; Miara, L. J.; Kononova, O.; Ceder, G. Adv. Energy Mater. 2020, 10, 1902881. doi: 10.1002/aenm.201902881

    54. [54]

      Zhao, J.; Zhao, C.; Zhu, J. P.; Liu, X. S.; Yao, J. M.; Wang, B.; Dai, Q. S.; Wang, Z. F.; Chen, J. Z.; Jia, P.; et al. Nano Lett. 2022, 2, 411. doi: 10.1021/acs.nanolett.1c04076

    55. [55]

      Jiang, W.; Zhu, X. X.; Huang, R. Z.; Zhao, S.; Fan, X. M.; Ling, M.; Liang, C. D.; Wang, L. G. Adv. Energy Mater. 2022, 2103473. doi: 10.1002/aenm.202103473

    56. [56]

      Yang, C.P.; Wu, Q.S.; Xie, W.Q.; Zhang, X.; Brozena, A.; Zheng, J.; Garaga, M. N.; Ko, B. H.; Mao, Y.M.; He, S.M.; et al. Nature 2021, 598, 590. doi: 10.1038/s41586-021-03885-6

    57. [57]

      Li, Z.; Zhou, X. Y.; Guo, X. Energy Storage Mater. 2020, 29, 149. doi: 10.1016/j.ensm.2020.04.015

    58. [58]

      Bi, Z. J.; Mu, S.; Zhao, N.; Sun, W. H.; Huang, W. L.; Guo, X. X. Energy Storage Mater. 2021, 35, 512. doi: 10.1016/j.ensm.2020.11.038

    59. [59]

      Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. ACS Appl. Energ. Mater. 2018, 1, 3622. doi: 10.1021/acsaem.8b00280

    60. [60]

      Xiao, Y. R.; Turcheniuk, K.; Narla, A.; Song, A. Y.; Ren, X. L.; Magasinski, A.; Jain, A.; Huang, S.; Lee, H.; Yushin, G. Nat. Mater. 2021, 20, 984. doi: 10.1038/s41563-021-00943-2

    61. [61]

      Geng, Z.; Huang, Y. L.; Sun, G. C.; Chen, R. S.; Cao, W. Z.; Zheng, J. Y.; Li, H. Nano Energy 2022, 91, 2211. doi: 10.1016/j.nanoen.2021.106679

    62. [62]

      Gao, X.W.; Liu, B.Y.; Hu, B.K.; Ning, Z.Y.; Jolly, D. S.; Zhang, S.M.; Perera, J.; Bu, J.; Liu, J.L.; Doerrer, C.; et al. Joule 2022, 6, 636. doi: 10.1016/j.joule.2022.02.008

    63. [63]

      朱高龙, 赵辰孜, 袁洪, 南皓雄, 赵铂琛, 侯立鹏, 何传新, 刘全兵, 黄佳琦. 物理化学学报, 2021, 37, 2005003. doi: 10.3866/PKU.WHXB202005003Zhu, G. L.; Zhao, C. Z.; Yuan, H.; Nan, H. X.; Zhao, B. C.; Hou, L. P.; He, C. X.; Liu, Q. B.; Huang, J. Q. Acta Phys. -Chim. Sin. 2021, 37, 2005003. doi: 10.3866/PKU.WHXB202005003

    64. [64]

      Doux, J. M.; Yang, Y. Y. C.; Tan, D. H. S.; Nguyen, H.; Wu, E. A.; Wang, X. F.; Banerjee, A.; Meng, Y. S. J. Mater. Chem. A 2020, 8, 5049. doi: 10.1039/c9ta12889a

    65. [65]

      Li, L. P.; Liu, W. Y.; Dong, H. Y.; Gui, Q. Y.; Hu, Z. Q.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2021, 33, 20204959. doi: 10.1002/adma.202004959

    66. [66]

      Nie, L.; Chen, S. J.; Zhang, C.; Dong, L.; He, Y. J.; Gao, T. Y.; Yu, J. M.; Liu, W. Cell Rep. Phys. Sci. 2022, 3, 100851. doi: 10.1016/j.xcrp.2022.100851

    67. [67]

      Liu, W. Y.; Yi, C. J.; Li, L. P.; Liu, S. L.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Peng, D. L.; Liu, J. P. Angew. Chem. Int. Edit. 2021, 60, 12931. doi: 10.1002/anie.202101537

    68. [68]

      Xia, Q. Y.; Zhang, Q. H.; Sun, S.; Hussain, F.; Zhang, C. C.; Zhu, X. H.; Meng, F. Q.; Liu, K. M.; Geng, H.; Xu, J.; et al. Adv. Mater. 2021, 33, 2003524. doi: 10.1002/adma.202003524

    69. [69]

      Salian, G. D.; Lebouin, C.; Demoulin, A.; Lepihin, M. S.; Maria, S.; Galeyeva, A. K.; Kurbatov, A. P.; Djenizian, T. J. Power Sources 2017, 340, 242. doi: 10.1016/j.jpowsour.2016.11.078

    70. [70]

      Matsuda, Y.; Kuwata, N.; Kawamura, J. Solid State Ion. 2018, 320, 38. doi: 10.1016/j.ssi.2018.02.024

    71. [71]

      Zhou, X.; Zhang, Y.; Shen, M.; Fang, Z.; Kong, T. Y.; Feng, W. L.; Xie, Y. H.; Wang, F.; Hu, B. W.; Wang, Y. G. Adv. Energy Mater. 2022, 12, 2103932. doi: 10.1002/aenm.202103932

  • 加载中
计量
  • PDF下载量:  27
  • 文章访问数:  1177
  • HTML全文浏览量:  255
文章相关
  • 发布日期:  2023-08-15
  • 收稿日期:  2022-11-08
  • 接受日期:  2022-12-12
  • 修回日期:  2022-12-05
  • 网络出版日期:  2022-12-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章