Citation: Yang Hu, Bin Liu, Luyao Xu, Ziqiang Dong, Yating Wu, Jie Liu, Cheng Zhong, Wenbin Hu. High-Throughput Synthesis and Screening of Pt-Based Ternary Electrocatalysts Using a Microfluidic-Based Platform[J]. Acta Physico-Chimica Sinica, ;2023, 39(3): 220900. doi: 10.3866/PKU.WHXB202209004 shu

High-Throughput Synthesis and Screening of Pt-Based Ternary Electrocatalysts Using a Microfluidic-Based Platform

  • Corresponding author: Jie Liu, jieliu0109@tju.edu.cn Cheng Zhong, cheng.zhong@tju.edu.cn Wenbin Hu, wbhu@tju.edu.cn
  • Received Date: 5 September 2022
    Revised Date: 3 October 2022
    Accepted Date: 4 October 2022
    Available Online: 11 October 2022

    Fund Project: the National Key Research and Development Program 2016YFB0700205the Tianjin Natural Science Foundation for Distinguished Young Scholar 18JCJQJC46500the National Youth Talent Support Program, and the National Science Foundation for Excellent Young Scholar 51722403

  • Pt-based electrocatalysts have received extensive attention owing to their wide applications in various fields, including fuel cells, hydrogen production, degradation of organic pollutants, electrochemical sensors, and oxidation of small molecules. Therefore, the efficient synthesis and screening of high-performance Pt-based electrocatalysts is necessary for accelerating their further development and application in these fields. The conventional method for developing the advanced materials and optimizing their synthesis parameters is time-consuming, inefficient, and costly. Microfluidic high-throughput techniques have the great potential for optimizing the synthesis parameters of Pt-based electrocatalysts. However, microfluidic high-throughput synthesis without performance evaluation cannot maximize its advantages. Therefore, it is highly desirable to develop a platform that combines the high-throughput synthesis of materials and the evaluation of their properties in a high-throughput fashion to improve the overall screening efficiency of the novel materials. In this study, a versatile microfluidic high-throughput platform, combining the high-throughput synthesis and screening of materials, was constructed. The microfluidic chip generated 20-level concentration gradients of the three different precursors. Microreactor arrays with 100 microchannels were used for the material synthesis and electrochemical characterization. A wide range of concentration combinations of the three different precursor solutions was achieved using the microfluidic chip. Five groups of Pt-based ternary electrocatalysts (100 different components in total) were synthesized and electrochemically characterized using the designed platform. The obtained Pt-based electrocatalysts exhibited a loose particle morphology, and were composed of small nanoparticles. The efficient preparation of Pt-based electrocatalysts with controllable compositions was also achieved through the high-throughput synthesis platform. The catalytic performance of the Pt-based catalysts towards oxygen evolution reaction (OER) was characterized by chronoamperometry. The optimal composition of Pt-based ternary electrocatalysts for OER was directly determined using the designed platform. For NiPtCu, the samples with a relatively high atomic percentage (approximately 50%) of Pt (i.e., Ni0.30Pt0.56Cu0.14, Ni0.17Pt0.52Cu0.31 and Ni0.12Pt0.48Cu0.40) exhibited higher electrocatalytic activity and stability, whereas the samples with a relatively high atomic percentage (> 50%) of Cu possessed lower activity and stability. For AuPtNi and AuPtCu, the samples wherein Au and Pt accounted for a large proportion of the sample (i.e., Ni or Cu < 10%) and the atomic ratios of Au : Pt were (3–4) : 1, e.g., Au0.71Pt0.25Ni0.04 and Au0.77Pt0.18Cu0.05, displayed high electrocatalytic activity and stability. As the atomic fraction of Au decreased, the atomic ratio of Pt and Ni in AuPtNi approached 3 : 1 or that of Pt and Cu in AuPtCu reached to 1 : 1, the samples (Au0.54Pt0.35Ni0.11, Au0.35Pt0.42Cu0.23, Au0.27Pt0.41Cu0.32 and Au0.12Pt0.32Cu0.56) all demonstrated high electrocatalytic activity and stability. The samples (Pt0.06Cu0.94) wherein the atomic percentages of Au and Pt were all less than 10%, exhibited poor electrocatalytic activity and stability. For RhPtNi and RhPtCu, when the atomic percentage of Rh in RhPtNi and RhPtCu was high (50%–90%) and almost no Ni or Cu was present, the samples (Rh0.91Pt0.09 and Rh0.82Pt0.18 for RhPtNi, as well as Rh0.88Pt0.12 and Rh0.75Pt0.21Cu0.04 for RhPtCu) all had high electrocatalytic activity and stability. As the atomic percentage of Rh decreased and that of Pt increased, the atomic percentages of Rh and Pt were relatively close, Rh0.54Pt0.32Ni0.14 and Rh0.51Pt0.36Cu0.14 showing high electrocatalytic activity and stability. When the atomic percentages of Ni and Cu were high (> 50%), the RhPtNi and RhPtCu samples all showed the relatively poor electrocatalytic activity and stability. These results demonstrate the high efficiency and flexibility of the constructed microfluidic high-throughput platform, which significantly shortens the cycle for the development cycle of new materials and the optimization of their properties.
  • 加载中
    1. [1]

      Li, M.; Xia, Z.; Huang, Y. H.; Tao, L.; Chao, Y.; Yin, K.; Yang, W.; Yang, W.; Yu, Y.; Guo, S. Acta Phys. -Chim. Sin. 2020, 36, 1912049.  doi: 10.3866/PKU.WHXB201912049

    2. [2]

      Liang, J.; Liu, X.; Li, Q. Acta Phys. -Chim. Sin. 2021, 37, 2010072.  doi: 10.3866/PKU.WHXB202010072

    3. [3]

      Xiao, Y.; Pei, Y.; Hu, Y.; Ma, R.; Wang, D.; Wang, J. Acta Phys. -Chim. Sin. 2021, 37, 2009051.  doi: 10.3866/PKU.WHXB202009051

    4. [4]

      Rao, P.; Luo, J.; Li, J.; Huang, W.; Sun, W.; Chen, Q.; Jia, C.; Liu, Z.; Deng, P.; Shen, Y.; et al. Carbon Energy 2022, 1. doi: 10.1002/cey2.192  doi: 10.1002/cey2.192

    5. [5]

      Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y. -W.; et al. Nature 2017, 544, 80. doi: 10.1038/nature21672  doi: 10.1038/nature21672

    6. [6]

      Luo, M.; Yao, W.; Huang, C.; Wu, Q.; Xu, Q. J. Mater. Chem. A 2015, 3, 13884. doi: 10.1039/C5TA00218D  doi: 10.1039/C5TA00218D

    7. [7]

      Xu, J.; Amorim, I.; Li, Y.; Li, J.; Yu, Z.; Zhang, B.; Araujo, A.; Zhang, N.; Liu, L. Carbon Energy 2020, 2, 646. doi: 10.1002/cey2.56  doi: 10.1002/cey2.56

    8. [8]

      Song, W.; Li, M.; Wang, C.; Lu, X. Carbon Energy 2021, 3, 101. doi: 10.1002/cey2.85  doi: 10.1002/cey2.85

    9. [9]

      Cao, B.; Li, G.; Li, H. Appl. Catal. B-Environ. 2016, 194, 42. doi: 10.1016/j.apcatb.2016.04.033  doi: 10.1016/j.apcatb.2016.04.033

    10. [10]

      Xu, T.; Zhao, H.; Zheng, H.; Zhang, P. Chem. Eng. J. 2020, 385, 123832. doi: 10.1016/j.cej.2019.123832  doi: 10.1016/j.cej.2019.123832

    11. [11]

      Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G. ACS Nano 2013, 7, 3540. doi: 10.1021/nn400482d  doi: 10.1021/nn400482d

    12. [12]

      Kumar, M. K.; Ramaprabhu, S. J. Phys. Chem. B 2006, 110, 11291. doi: 10.1021/jp0611525  doi: 10.1021/jp0611525

    13. [13]

      Liu, J.; Chen, B.; Kou, Y.; Liu, Z.; Chen, X.; Li, Y.; Deng, Y.; Han, X.; Hu, W.; Zhong, C. J. Mater. Chem. A 2016, 4, 11060. doi: 10.1039/C6TA02284G  doi: 10.1039/C6TA02284G

    14. [14]

      Liu, J.; Liu, Z.; Wang, H.; Liu, B.; Zhao, N.; Zhong, C.; Hu, W. Adv. Funct. Mater. 2022, 32, 2110702. doi: 10.1002/adfm.202110702  doi: 10.1002/adfm.202110702

    15. [15]

      Li, G.; Wen, P.; Gao, C.; Zhang, T.; Hu, J.; Zhang, Y.; Guan, S.; Li, Q.; Li, B. Int. J. Min. Met. Mater. 2021, 28, 1224. doi: 10.1007/s12613-020-2076-2  doi: 10.1007/s12613-020-2076-2

    16. [16]

      Wang, X.; Zhang, J.; Cao, X.; Jiang, Y.; Zhu, H. Int. J. Min. Met. Mater. 2011, 18, 594. doi: 10.1007/s12613-011-0483-0  doi: 10.1007/s12613-011-0483-0

    17. [17]

      Zhong, C.; Liu, J.; Ni, Z.; Deng, Y.; Chen, B.; Hu, W. Sci. China Mater. 2014, 57, 13. doi: 10.1007/s40843-014-0010-5  doi: 10.1007/s40843-014-0010-5

    18. [18]

      Scheidtmann, J.; Weiß, P. A.; Maier, W. F. Appl. Catal. A-Gen. 2001, 222, 79. doi: 10.1016/S0926-860X(01)00831-6  doi: 10.1016/S0926-860X(01)00831-6

    19. [19]

      Nursam, N. M.; Wang, X.; Caruso, R. A. ACS Comb. Sci. 2015, 17, 548. doi: 10.1021/acscombsci.5b00049  doi: 10.1021/acscombsci.5b00049

    20. [20]

      Liu, D.; Cito, S.; Zhang, Y.; Wang, C. -F.; Sikanen, T. M.; Santos, H. A. Adv. Mater. 2015, 27, 2298. doi: 10.1002/adma.201405408  doi: 10.1002/adma.201405408

    21. [21]

      Liu, X.; Liu, B.; Ding, J.; Deng, Y.; Han, X.; Zhong, C.; Hu, W. Adv. Funct. Mater. 2022, 32, 2107862. doi: 10.1002/adfm.202107862  doi: 10.1002/adfm.202107862

    22. [22]

      Hu, Y.; Liu, B.; Wu, Y.; Li, M.; Liu, X.; Ding, J.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. Front. Chem. 2020, 8, 579828. doi: 10.3389/fchem.2020.579828  doi: 10.3389/fchem.2020.579828

    23. [23]

      Manz, A.; Harrison, D. J.; Verpoort, E. M. J.; Fettinger, J. C.; Paulus, A.; Lüdi, H.; Widmer, H. M. J. Chromatogr. A 1992, 593, 253. doi: 10.1016/0021-9673(92)80293-4  doi: 10.1016/0021-9673(92)80293-4

    24. [24]

      Agresti, J. J.; Antipov, E.; Abate, A. R.; Ahn, K.; Rowat, A. C.; Baret, J. -C.; Marquez, M.; Klibanov, A. M.; Griffiths, A. D.; Weitz, D. A. Proc. Natl. Acad. Sci. 2010, 107, 4004. doi: 10.1073/pnas.0910781107  doi: 10.1073/pnas.0910781107

    25. [25]

      Huang, M. C.; Cheong, W. C.; Lim, L. S.; Li, M. -H. Electrophoresis 2012, 33, 788. doi: 10.1002/elps.201100460  doi: 10.1002/elps.201100460

    26. [26]

      Whitesides, G. M. Nature 2006, 442, 368. doi: 10.1038/nature05058  doi: 10.1038/nature05058

    27. [27]

      Atencia, J.; Beebe, D. J. Nature 2005, 437, 648. doi: 10.1038/nature04163  doi: 10.1038/nature04163

    28. [28]

      Du, G.; Fang, Q.; den Toonder, J. M. J. Anal. Chim. Acta 2016, 903, 36. doi: 10.1016/j.aca.2015.11.023  doi: 10.1016/j.aca.2015.11.023

    29. [29]

      Lu, Q.; Huan, J.; Han, C.; Sun, L.; Yang, X. Electrochim. Acta 2018, 266, 305. doi: 10.1016/j.electacta.2018.02.021  doi: 10.1016/j.electacta.2018.02.021

    30. [30]

      Huang, X.; Zhu, E.; Chen, Y.; Li, Y.; Chiu, C. -Y.; Xu, Y.; Lin, Z.; Duan, X.; Huang, Y. Adv. Mater. 2013, 25, 2974. doi: 10.1002/adma.201205315  doi: 10.1002/adma.201205315

    31. [31]

      Jiang, Y.; Jia, Y.; Zhang, J.; Zhang, L.; Huang, H.; Xie, Z.; Zheng, L. Chem. -Eur. J. 2013, 19, 3119. doi: 10.1002/chem.201203729  doi: 10.1002/chem.201203729

    32. [32]

      Mott, D.; Luo, J.; Njoki, P. N.; Lin, Y.; Wang, L.; Zhong, C. -J. Catal. Today 2007, 122, 378. doi: 10.1016/j.cattod.2007.01.007  doi: 10.1016/j.cattod.2007.01.007

  • 加载中
    1. [1]

      Bin ZhaoHeping LuoJiaqing LiuSha ChenHan XuYu LiaoXue Feng LuYan QingYiqiang Wu . S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chinese Chemical Letters, 2025, 36(5): 109919-. doi: 10.1016/j.cclet.2024.109919

    2. [2]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    3. [3]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    4. [4]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    5. [5]

      Sumiya Akter Dristy Md Ahasan Habib Shusen Lin Mehedi Hasan Joni Rutuja Mandavkar Young-Uk Chung Md Najibullah Jihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-. doi: 10.1016/j.actphy.2025.100079

    6. [6]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    7. [7]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    8. [8]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    9. [9]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    10. [10]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    11. [11]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    12. [12]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    13. [13]

      Jiawei GeXian WangHeyuan TianHao WanWei MaJiangying QuJunjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906

    14. [14]

      Chupeng LuoKeying SuShan YangYujia LiangYawen TangXiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940

    15. [15]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    16. [16]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    17. [17]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    18. [18]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    19. [19]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    20. [20]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

Metrics
  • PDF Downloads(12)
  • Abstract views(1064)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return