
富氧空位的非晶氧化铜高选择性电催化还原CO2制乙烯
English
Oxygen Vacancy-Rich Amorphous Copper Oxide Enables Highly Selective Electroreduction of Carbon Dioxide to Ethylene

-
Key words:
- CO2 fixation
- / C2 product
- / Electrocatalysis
- / Amorphous catalyst
- / Cu oxide
-
-
[1]
Bao, H.; Qiu, Y.; Peng, X.; Wang, J. -A.; Mi, Y.; Zhao, S.; Liu, X.; Liu, Y.; Cao, R.; Zhuo, L.; et al. Nat. Commun. 2021, 12, 238. doi: 10.1038/s41467-020-20336-4
-
[2]
Meng, D. -L.; Zhang, M. -D.; Si, D. -H.; Mao, M. -J.; Hou, Y.; Huang, Y. -B.; Cao, R. Angew. Chem. Int. Ed. 2021, 60, 25485. doi: 10.1002/anie.202111136
-
[3]
Li, H.; Yu, P.; Lei, R.; Yang, F.; Wen, P.; Ma, X.; Zeng, G.; Guo, J.; Toma, F. M.; Qiu, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 24838. doi: 10.1002/anie.202109600
-
[4]
Gu, Z.; Yang, N.; Han, P.; Kuang, M.; Mei, B.; Jiang, Z.; Zhong, J.; Li, L.; Zheng, G. Small Methods 2019, 3, 1800449. doi: 10.1002/smtd.201800449
-
[5]
Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. -W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P.; et al. Nat. Commun. 2016, 7, 12123. doi: 10.1038/ncomms12123
-
[6]
Ye, W.; Guo, X.; Ma, T. Chem. Eng. J. 2021, 414, 128825. doi: 10.1016/j.cej.2021.128825
-
[7]
Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Coord. Chem. Rev. 2022, 454, 214340. doi: 10.1016/j.ccr.2021.214340
-
[8]
Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814. doi: 10.1021/cs502128q
-
[9]
Han, L.; Song, S.; Liu, M.; Yao, S.; Liang, Z.; Cheng, H.; Ren, Z.; Liu, W.; Lin, R.; Qi, G.; et al. J. Am. Chem. Soc. 2020, 142, 12563. doi: 10.1021/jacs.9b12111
-
[10]
Kim, J. -Y.; Hong, D.; Lee, J. -C.; Kim, H. G.; Lee, S.; Shin, S.; Kim, B.; Lee, H.; Kim, M.; Oh, J.; et al. Nat. Commun. 2021, 12, 3765. doi: 10.1038/s41467-021-24105-9
-
[11]
Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766
-
[12]
Gao, S.; Liu, Y.; Xie, Z.; Qiu, Y.; Zhuo, L.; Qin, Y.; Ren, J.; Zhang, S.; Hu, G.; Luo, J.; Liu, X. Small Methods 2021, 5, 2001039. doi: 10.1002/smtd.202001039
-
[13]
Liu, S.; Jin, M.; Sun, J.; Qin, Y.; Gao, S.; Chen, Y.; Zhang, S.; Luo, J.; Liu, X. Chem. Eng. J. 2022, 437, 135294. doi: 10.1016/j.cej.2022.135294
-
[14]
Mi, Y.; Qiu, Y.; Liu, Y.; Peng, X.; Hu, M.; Zhao, S.; Cao, H.; Zhuo, L.; Li, H.; Ren, J.; et al. Adv. Funct. Mater. 2020, 30, 2003438. doi: 10.1002/adfm.202003438
-
[15]
Yin, Z.; Yu, C.; Zhao, Z.; Guo, X.; Shen, M.; Li, N.; Muzzio, M.; Li, J.; Liu, H.; Lin, H.; et al. Nano Lett. 2019, 19, 8658. doi: 10.1021/acs.nanolett.9b03324
-
[16]
Altaf, N.; Liang, S.; Iqbal, R.; Hayat, M.; Reina, T. R.; Wang, Q. J. CO2 Util. 2020, 40, 101205. doi: 10.1016/j.jcou.2020.101205
-
[17]
Zhang, Y. -J.; Peterson, A. A. Phys. Chem. Chem. Phys. 2015, 17, 4505. doi: 10.1039/C4CP03783A
-
[18]
Kimmel, G. A.; Petrik, N. G. Phys. Rev. Lett. 2008, 100, 196102. doi: 10.1103/PhysRevLett.100.196102
-
[19]
Wang, Y.; Zheng, X.; Wang, D. Nano Res. 2022, 15, 1730. doi: 10.1007/s12274-021-3794-0
-
[20]
Li, R.; Wang, D. Nano Res. 2022, 15, 6888. doi: 10.1007/s12274-022-4371-x
-
[21]
Gao, S.; Wang, T.; Jin, M.; Zhang, S.; Liu, Q. Hu, G. Yang H. Luo J. Liu X. Sci. China Mater. 2022. doi: 10.1007/s40843-022-2236-8
-
[22]
Zhuang, Z.; Li, Y.; Yu, R.; Xia, L.; Yang, J.; Lang, Z.; Zhu, J.; Huang, J.; Wang, J.; Wang, Y.; et al. Nat. Catal. 2022, 5, 300. doi: 10.1038/s41929-022-00764-9
-
[23]
Liu, W.; Feng, J.; Wei, T.; Liu, Q.; Zhang, S.; Luo Y.; Luo, J.; Liu, X.; Nano Res. 2022. doi: 10.1007/s12274-022-4929-7
-
[24]
Dai, Y.; Xiong, Y. Nano Res. Energy 2022, 1, e9120006. doi: 10.26599/NRE.2022.9120006
-
[25]
Gao, S.; Wei, T.; Sun, J.; Liu, Q.; Ma, D.; Liu, W.; Zhang, S.; Luo, J.; Liu, X. Small Struct. 2022, n/a. doi: 10.1002/sstr.202200086
-
[26]
Ye, H.; L, Y. Nano Res. Energy 2022, 1, e9120012. doi: 10.26599/NRE.2022.9120012
-
[27]
Safaei, J.; Wang, G. Nano Res. Energy 2022, 1, e9120008. doi: 10.26599/NRE.2022.9120008
-
[28]
Wang, X.; Liu, S.; Zhang, H.; Zhang, S.; Meng, G.; Liu, Q.; Sun, Z.; Luo, J.; Liu, X. Chem. Commun. 2022, 58, 7654. doi: 10.1039/D2CC01888H
-
[29]
Xie, Z.; Qiu, Y.; Gao, S.; Sun, J.; Cao, H.; Zhang, S.; Luo, J.; Liu, X. ChemElectroChem 2021, 8, 3579. doi: 10.1002/celc.202100921
-
[30]
Nie, Y.; Hu, C.; Qu, J.; Zhao, X. Appl. Catal. B 2009, 87, 30. doi: 10.1016/j.apcatb.2008.08.022
-
[31]
Zhao, Z.; Peng, X.; Liu, X.; Sun, X.; Shi, J.; Han, L.; Li, G.; Luo, J. J. Mater. Chem. A 2017, 5, 20239. doi: 10.1039/C7TA05507B
-
[32]
Huo, Y.; Peng, X.; Liu, X.; Li, H.; Luo, J. ACS Appl. Mater. Interfaces 2018, 10, 12618. doi: 10.1021/acsami.7b19423
-
[33]
Liu, X.; Xi, W.; Li, C.; Li, X.; Shi, J.; Shen, Y.; He, J.; Zhang, L.; Xie, L.; Sun, X.; et al. Nano Energy 2018, 44, 371. doi: 10.1016/j.nanoen.2017.12.016
-
[34]
Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. Nat. Catal. 2018, 1, 111. doi: 10.1038/s41929-017-0009-x
-
[35]
Lee, S. Y.; Jung, H.; Kim, N. -K.; Oh, H. -S.; Min, B. K.; Hwang, Y. J. J. Am. Chem. Soc. 2018, 140, 8681. doi: 10.1021/jacs.8b02173
-
[36]
Zhang, H.; Qiu, Y.; Zhang, S.; Liu, Q.; Luo, J.; Liu, X. Ionics 2022, 28, 3927. doi: 10.1007/s11581-022-04634-z
-
[37]
Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X.; Yang, B.; Cho, J.; Chen, M.; et al. Nat. Commun. 2019, 10, 1392. doi: 10.1038/s41467-019-09394-5
-
[38]
Yu, X.; Hu, C.; Ji, P.; Ren, Y.; Zhao, H.; Liu, G.; Xu, R.; Zhu, X.; Li, Z.; Ma, Y.; Ma, L. Appl. Catal. B 2022, 310, 121301. doi: 10.1016/j.apcatb.2022.121301
-
[39]
Han, L.; Liu, X.; He, J.; Liang, Z.; Wang, H. -T.; Bak, S. -M.; Zhang, J.; Hunt, A.; Waluyo, I.; Pong, W. -F.; et al. Adv. Energy Mater. 2021, 11, 2100044. doi: 10.1002/aenm.202100044
-
[40]
Yang, M.; Liu, S.; Sun, J.; Jin, M.; Fu, R.; Zhang, S.; Li, H.; Sun, Z.; Luo, J.; Liu, X. Appl. Catal. B 2022, 307, 121145. doi: 10.1016/j.apcatb.2022.121145
-
[41]
Zhang, H.; Luo, Y.; Chu, P. K.; Liu, Q.; Liu, X.; Zhang, S.; Luo, J.; Wang, X.; Hu, G. J. Alloys Compd. 2022, 922, 166113. doi: 10.1016/j.jallcom.2022.166113
-
[42]
Liu, H.; Fu, J.; Li, H.; Sun, J.; Liu, X.; Qiu, Y.; Peng, X.; Liu, Y.; Bao, H.; Zhuo, L.; et al. Appl. Catal. B 2022, 306, 121029. doi: 10.1016/j.apcatb.2021.121029
-
[43]
Tao, H.; Choi, C.; Ding, L. -X.; Jiang, Z.; Han, Z.; Jia, M.; Fan, Q.; Gao, Y.; Wang, H.; Robertson, A. W.; et al. Chem 2019, 5, 204. doi: 10.1016/j.chempr.2018.10.007
-
[44]
Yang, M.; Sun, J.; Qin, Y.; Yang, H.; Zhang, S.; Liu, X.; Luo, J. Sci. China Mater. 2022, 65, 536. doi: 10.1007/s40843-021-1890-7
-
[45]
Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. Adv. Mater. 2018, 30, 1800191. doi: 10.1002/adma.201800191
-
[46]
Li, B.; Li, Z.; Wu, X.; Zhu, Z. Nano Res. Energy 2022, 1, e9120011. doi: 10.26599/NRE.2022.9120011
-
[47]
Liu, S.; Wang, L.; Yang, H.; Gao, S.; Liu, Y.; Zhang, S.; Chen, Y.; Liu, X.; Luo, J. Small 2022, 18, 2104965. doi: 10.1002/smll.202104965
-
[48]
Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. Nano Res. Energy 2022, 1. doi: 10.26599/NRE.2022.9120010
-
[49]
Gao, S.; Jin, M.; Sun, J.; Liu, X.; Zhang, S.; Li, H.; Luo, J.; Sun, X. J. Mater. Chem. A 2021, 9, 21024. doi: 10.1039/D1TA04360A
-
[50]
Gu, Z.; Shen, H.; Chen, Z.; Yang, Y.; Yang, C.; Ji, Y.; Wang, Y.; Zhu, C.; Liu, J.; Li, J.; et al. Joule 2021, 5, 429. doi: 10.1016/j.joule.2020.12.011
-
[51]
Möller, T.; Scholten, F.; Thanh, T. N.; Sinev, I.; Timoshenko, J.; Wang, X.; Jovanov, Z.; Gliech, M.; Roldan Cuenya, B.; Varela, A. S.; et al. Angew. Chem. Int. Ed. 2020, 59, 17974. doi: 10.1002/anie.202007136
-
[52]
Kibria, M. G.; Dinh, C. -T.; Seifitokaldani, A.; De Luna, P.; Burdyny, T.; Quintero-Bermudez, R.; Ross, M. B.; Bushuyev, O. S.; García de Arquer, F. P.; et al. Adv. Mater. 2018, 30, 1804867. doi: 10.1002/adma.201804867
-
[53]
Pang, Y.; Burdyny, T.; Dinh, C. -T.; Kibria, M. G.; Fan, J. Z.; Liu, M.; Sargent, E. H.; Sinton, D. Green Chem. 2017, 19, 4023. doi: 10.1039/C7GC01677H
-
[54]
Ge, S.; Zhang, L.; Hou, J.; Liu, S.; Qin, Y.; Liu, Q.; Cai, X.; Sun, Z.; Yang, M.; Luo, J.; Liu, X. ACS Appl. Energy Mater. 2022, 5, 9487. doi: 10.1021/acsaem.2c01006
-
[55]
Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Nano Res. Energy 2022, 1, e9120021. doi: 10.26599/NRE.2022.9120021
-
[56]
Qi, D.; Lv, F.; Wei, T.; Jin, M.; Meng, G.; Zhang, S.; Liu, Q.; Liu, W.; Ma, D.; Hamdy, M. S.; et al. Nano Res. Energy 2022, 1, e9120022. doi: 10.26599/NRE.2022.9120022
-
[57]
Xu, J.; He, J.; Ding, Y.; Luo, J. Sci. China Mater. 2020, 63, 1788. doi: 10.1007/s40843-020-1320-1
-
[58]
Larrazábal, G. O.; Strøm-Hansen, P.; Heli, J. P.; Zeiter, K.; Therkildsen, K. T.; Chorkendorff, I.; Seger, B. ACS Appl. Mater. Interfaces 2019, 11, 41281. doi: 10.1021/acsami.9b13081
-
[59]
周远, 韩娜, 李彦光. 物理化学学报, 2020, 36, 2001041. doi: 10.3866/PKU.WHXB202001041Zhou, Y.; Han, N.; Li, Y. Acta Phys. -Chim. Sin. 2020, 36, 2001041. doi: 10.3866/PKU.WHXB202001041
-
[60]
Meng, G.; Wei, T.; Liu, W.; Li, W.; Zhang, S.; Liu, W.; Liu, Q.; Bao, H.; Luo, J.; Liu, X. Chem. Commun. 2022, 58, 8097. doi: 10.1039/D2CC02463B
-
[61]
Pei, Z. Nano Res. Energy 2022, 1, e9120023 doi: 10.26599/NRE.2022.9120023
-
[62]
韩布兴. 物理化学学报, 2022, 38, 2012011. doi: 10.3866/PKU.WHXB202012011Han, B. Acta Phys. -Chim. Sin. 2022, 38, 2012011. doi: 10.3866/PKU.WHXB202012011
-
[63]
郝磊端, 孙振宇. 物理化学学报, 2021, 37, 2009033. doi: 10.3866/PKU.WHXB202009033Hao, L.; Sun, Z. Acta Phys. -Chim. Sin. 2021, 37, 2009033. doi: 10.3866/PKU.WHXB202009033
-
[64]
Meng, G.; Jin, M.; Wei, T.; Liu, Q.; Zhang, S.; Peng, X.; Luo, J.; Liu, X. Nano Res. 2022. doi: 10.1007/s12274-022-4747-y
-
[65]
Zhang, Q.; Zhang, S.; Luo, Y.; Liu, Q.; Luo, J.; Chu, P. K.; Liu, X. APL Mater. 2022, 10, 070701. doi: 10.1063/5.0097479
-
[66]
Yang, M.; Liu, Y.; Sun, J.; Zhang, S.; Liu, X.; Luo, J. Sci. China Mater. 2022, 65, 1176. doi: 10.1007/s40843-021-1902-2
-
[1]
-

计量
- PDF下载量: 77
- 文章访问数: 2033
- HTML全文浏览量: 225