基于MXenes的功能纤维的制备及其在智能可穿戴领域的应用

曹晓辉 侯成义 李耀刚 李克睿 张青红 王宏志

引用本文: 曹晓辉, 侯成义, 李耀刚, 李克睿, 张青红, 王宏志. 基于MXenes的功能纤维的制备及其在智能可穿戴领域的应用[J]. 物理化学学报, 2022, 38(9): 220405. doi: 10.3866/PKU.WHXB202204058 shu
Citation:  Xiaohui Cao, Chengyi Hou, Yaogang Li, Kerui Li, Qinghong Zhang, Hongzhi Wang. MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field[J]. Acta Physico-Chimica Sinica, 2022, 38(9): 220405. doi: 10.3866/PKU.WHXB202204058 shu

基于MXenes的功能纤维的制备及其在智能可穿戴领域的应用

    作者简介:



    张青红,东华大学材料科学与工程学院研究员,博士生导师。2000年毕业于中国科学院上海硅酸盐研究所,获得博士学位。主要研究方向为薄膜太阳能电池、可见光催化制氢及有机-无机杂化材料;
    王宏志,东华大学材料科学与工程学院教授,博士生导师。1998年获得中国科学院上海硅酸盐研究所博士学位。主要从事柔性电子材料与器件、智能显色与变色器件、可穿戴器件与系统和先进纳米纤维及复合材料的研究;
    通讯作者: 张青红, zhangqh@dhu.edu.cn; 王宏志, wanghz@dhu.edu.cn
  • 基金项目:

    东华大学励志计划 LZB2019002

摘要: 在电子信息和物联网技术的推动下,人类对可穿戴电子器件和智能织物的需求愈发突出,功能纤维作为智能可穿戴设备的重要载体,近年来获得快速发展。功能纤维的性能很大程度上取决于纤维的基础构筑单元。过渡金属碳/氮化物(MXenes)作为一种新兴的二维材料,凭借其高电导率、优异的可加工性能、可调节的表面特性以及出色的机械强度等优点,受到了极大的关注,也逐渐成为构筑功能纤维的重要单元。本文将主要综述MXenes的湿化学、熔融盐、无氟试剂刻蚀等方法和力学、电学、光学和化学稳定性等性能,阐述基于该材料制备的功能纤维在传感、储能以及其他智能领域的应用,最后讨论了基于MXenes材料的功能纤维的未来应用前景和技术挑战。

English

    1. [1]

      Novoselov, K. S.; Geim A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896

    2. [2]

      王根旺, 侯超剑, 龙昊天, 杨立军, 王扬. 物理化学学报, 2019, 35, 1319. doi: 10.3866/PKU.WHXB201903010Wang, G.; Hou, C.; Long, H.; Yang, L.; Wang, Y. Acta Phys. -Chim. Sin. 2019, 35, 1319. doi: 10.3866/PKU.WHXB201903010

    3. [3]

      Lin, Y.; Williams, T. V.; Connell, J. W. J. Phys. Chem. Lett. 2010, 1, 277. doi: 10.1021/JZ9002108

    4. [4]

      Zhou, K.; Mao, N.; Wang, H.; Peng, Y.; Zhang, H. Angew. Chem. Int. Ed. 2011, 50, 10839. doi: 10.1002/anie.201105364

    5. [5]

      Li, L.; Yu, Y.; Ye, G.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.; Zhang, Y. Nat. Nanotech. 2014, 9, 372. doi: 10.1038/nnano.2014.35

    6. [6]

      Yan, S.; Li, Z.; Zou, Z. Langmuir 2009, 25, 10397. doi: 10.1021/la900923z

    7. [7]

      Wang, Q.; O'Hare, D. Chem. Rev. 2012, 112, 4124. doi: 10.1021/cr200434v

    8. [8]

      Vogt, P.; Padova, P. D.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Lay, G. L. Phys. Rev. Lett. 2012, 108, 155501. doi: 10.1103/PHYSREVLETT.108.155501

    9. [9]

      Naguib, M; Kurtoglu, M; Presser, V; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23, 4248. doi: 10.1002/adma.201102306

    10. [10]

      Vahidmohammadi, A.; Rosen, J.; Gogotsi, Y. Science 2021, 372, eabf1581. doi: 10.1126/science.abf1581

    11. [11]

      Wang, Y.; Guo, T.; Tian, Z.; Bibi, K.; Zhang, Y.; Alshareef, H. Adv. Mater. 2022, 34, 2108560. doi: 10.1002/adma.202108560

    12. [12]

      Zhao, Y.; Zhang, X.; Han, X.; Hou, C.; Wang, H.; Qi, J.; Li, Y.; Zhang, Q. Chem. Eng. J. 2021, 417, 127912. doi: 10.1016/j.cej.2020.127912

    13. [13]

      Wang, C.; Zheng, Z.; Feng, Y.; Huan, Y.; Cao, F.; Guo, Z. Nano Energy 2020, 74, 104817. doi: 10.1016/j.nanoen.2020.104817

    14. [14]

      Zhou, B.; Zhang, Z.; Li, Y.; Han, G.; Feng, Y.; Wang, B.; Zhang, D.; Ma, J.; Liu, C. ACS Appl. Mater. Interfaces 2020, 12, 4895. doi: 10.1021/acsami.9b19768

    15. [15]

      Lee, E.; VahidMohammadi, A.; Yoon, Y. S.; Beidaghi, M.; Kim, D. ACS Sens. 2019, 4, 1603. doi: 10.1021/acssensors.9b00303

    16. [16]

      Sun, Y.; Meng, X.; Dall'Agnese, Y.; Dall'Agnese, C.; Duan, S.; Gao, Y.; Chen, G.; Wang, X. Nano-Micro Lett. 2019, 11, 79. doi: 10.1007/s40820-019-0309-6

    17. [17]

      程龙, 刘公平, 金万勤. 物理化学学报, 2019, 35, 1090. doi: 10.3866/PKU.WHXB201810059Cheng, L.; Liu G. P.; Jin W. Q. Acta Phys. -Chim. Sin. 2019, 35, 1090. doi: 10.3866/PKU.WHXB201810059

    18. [18]

      Driscoll, N.; Richardson A. G.; Maleski, K.; Anasori, B.; Adewole, O.; Lelyukh, P.; Escobedo, L.; Cullen, D. K.; Lucas, T. H.; Gogotsi, Y.; Vitale, F. ACS Nano 2018, 12, 10419. doi: 10.1021/acsnano.8b06014

    19. [19]

      Ding, L.; Li, L.; Liu, Y.; Wu, Yi.; Lu, Z.; Deng, J.; Wei, Y.; Caro, J.; Wang, H. Nat. Sustain. 2020, 3, 296. doi: 10.1038/s41893-020-0474-0

    20. [20]

      Levitt, A.; Zhang, J.; Dion, G.; Gogotsi, Y.; Razal, J. M. Adv. Funct. Mater. 2020, 30, 2000739. doi: 10.1002/adfm.202000739

    21. [21]

      Qin, S.; Usman, K. A. S.; Hegh, D.; Seyedin, S.; Gogotsi, Y.; Zhang, J.; Razal, J. M. ACS Appl. Mater. Interfaces 2021, 13, 36655. doi: 10.1021/acsami.1c08985

    22. [22]

      Seyedin, S.; Uzun, S.; Levitt, A.; Anasori, B.; Dion, G.; Gogotsi, Y.; Razal, J. M. Adv. Funct. Mater. 2020, 30, 1910504. doi: 10.1002/adfm.201910504

    23. [23]

      Liu, R.; Li, J.; Li, M.; Zhang, Q.; Shi, G.; Li, Y.; Hou, C.; Wang, H. ACS Appl. Mater. Interfaces 2020, 12, 46446. doi: 10.1021/acsami.0c11715

    24. [24]

      Eom, W.; Shin, H.; Ambade, R. B.; Lee, S. H.; Lee, K. H.; Kang, D. J.; Han, T. H. Nat. Commun. 2020, 11, 2825. doi: 10.1038/s41467-020-16671-1

    25. [25]

      Persson, I.; Halim, J.; Hansen, T. W.; Wagner, J. B.; Darakchieva, V.; Palisaitis, J.; Rosen, J.; Persso, P. O. Å. Adv. Funct. Mater. 2020, 30, 1909005. doi: 10.1002/adfm.201909005

    26. [26]

      郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 材料导报, 2017, 31, 1. doi: 10.11896/j.issn.1005-023X.2017.09.001Zheng, W.; Sun, Z.; Zhang, P.; Tian, W.; Wang, Y.; Zhang, Y. Materials Reports 2017, 31, 1. doi: 10.11896/j.issn.1005-023X.2017.09.001

    27. [27]

      Naguib, M; Mashtalir, O; Carle, J; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. ACS Nano 2012, 6, 1322. doi: 10.1021/nn204153h

    28. [28]

      Sang, X.; Xie, Y.; Lin, M.; Alhabeb, M.; Aken, K. L. V.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R. ACS Nano 2016, 10, 9193. doi: 10.1021/acsnano.6b05240

    29. [29]

      Pei, Y.; Zhang X.; Hui, Z.; Zhou, J.; Huang, X.; Sun, G.; Huang, W. ACS Nano 2021, 15, 3, 3996. doi: 10.1021/acsnano.1c00248

    30. [30]

      Levitt, A. S.; Alhabeb, M.; Hatter C. B.; Sarycheva, A.; Dion, G.; Gogotsi, Y. J. Mater. Chem. A 2019, 7, 269. doi: 10.1039/c8ta09810g

    31. [31]

      Cao, J; Sun, Z; Li, J; Zhu, Y.; Yuan, Z.; Zhang, Y.; Li, D.; Wang, L.; Han, W. ACS Nano 2021, 15, 3423. doi: 10.1021/acsnano.0c10491

    32. [32]

      Ghidiu, M.; Lukatskaya, M. R.; Zhao, M.; Gogotsi, Y.; Barsoum, M. W. Nature 2014, 516, 78. doi: 10.1038/nature13970

    33. [33]

      Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Adv. Electron. Mater. 2016, 2, 1600255. doi: 10.1002/aelm.201600255

    34. [34]

      Alhabeb, M; Maleski, K; Anasori, B; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Chem. Mater. 2017, 29, 7633. doi: 10.1021/acs.chemmater.7b02847

    35. [35]

      阚东晓. MXene基双功能单原子电催化剂的第一性原理研究[D]. 长春: 吉林大学, 2021. doi: 10.27162/d.cnki.gjlin.2021.002809.Kan, D. First principles study of MXene based bifunctional single atom electrocatalysts. Ph. D. Dissertation, Jilin University, Changchun, 2021

    36. [36]

      Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B. C.; Hultman, L.; Kent, P. R. C.; Gogotsi, Y.; Barsoum, M. W. ACS Nano 2015, 9, 9507. doi: 10.1021/acsnano.5b03591

    37. [37]

      Yang, J.; Naguib, M.; Ghidiu, M.; Pan, L.; Gu, J.; Nanda, J.; Halim, J.; Gogotsi, Y.; Barsoum, M. W. J. Am. Ceram. Soc. 2016, 99, 660. doi: 10.1111/jace.13922

    38. [38]

      Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W. Adv. Funct. Mater. 2016, 26, 3118. doi: 10.1002/adfm.201505328

    39. [39]

      Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992. doi: 10.1002/adma.201304138

    40. [40]

      Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P. L.; Zhao, M.; Shenoy, V. B.; Barsouma, M. W.; Gogotsi. Y. Nanoscale 2016, 8, 11385. doi: 10.1039/C6NR02253G

    41. [41]

      Li, M.; Lu, J.; Luo, K.; Li, Y.; Chang, K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. J. Am. Chem. Soc. 2019, 141, 4730. doi: 10.1021/jacs.9b00574

    42. [42]

      Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M.; et al. Nat. Mater. 2020, 19, 894. doi: 10.1038/s41563-020-0657-0

    43. [43]

      李雪松. 二维晶体MXene (Ti3C2Tx)环境不稳定性的研究[D]. 济南: 山东大学, 2021.Li, X. Study on Environmental Instability of Two-dimensional Crystal MXene (Ti3C2Tx). Ph. D. Dissertation, Shandong University, Jinan, 2021

    44. [44]

      Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; et al. Angew. Chem. Int. Ed. 2018, 57, 6115. doi: 10.1002/anie.201800887

    45. [45]

      Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A. G.; Lohe, M. R.; Blom, P. W. M.; Feng, X. Angew. Chem. Int. Ed. 2018, 57, 15491. doi: 10.1002/anie.201809662

    46. [46]

      Wang, C.; Shou, H.; Chen, S.; Wei, S.; Lin, Y.; Zhang, P.; Liu, Z.; Zhu, K.; Guo, X.; Wu, X.; et al. Adv. Mater. 2021, 33, 2101015. doi: 10.1002/adma.202101015

    47. [47]

      Xu, C.; Wang, L.; Liu, Z.; Chen, L.; Guo, J.; Kang, N.; Ma, X.; Cheng, H.; Ren, W. Nat. Mater. 2015, 14, 1135. doi: 10.1038/nmat4374

    48. [48]

      Wang, Z.; Kochat, V.; Pandey, P.; Kashyap, S.; Chattopadhy, S.; Samanta, A.; Sarkar, S.; Manimunda, P.; Zhang, X.; Asif, S.; et al. Adv. Mater. 2017, 29, 1700364. doi: 10.1002/adma.201700364

    49. [49]

      Qi, Y.; Meng, C.; Xu, X.; Deng, B.; Han, N.; Liu, M.; Hong, M.; Ning, Y.; Liu, K.; Zhao, J.; et al. J. Am. Chem. Soc. 2017, 139, 48, 17574. doi: 10.1021/jacs.7b09755

    50. [50]

      Kurtoglu, M.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W. MRS Commun. 2012, 2, 133. doi: 10.1557/mrc.2012.25

    51. [51]

      Borysiuk, V. N.; Mochalin, V. N.; Gogotsi, Y. Nanotechnology 2015, 26, 265705. doi: 10.1088/0957-4484/26/26/265705

    52. [52]

      Lipatov, A.; Lu, H.; Alhabeb, M.; Anasori, B.; Gruverman, A.; Gogotsi, Y.; Sinitskii, A. Sci. Adv. 2018, 4, eaat0491. doi: 10.1126/sciadv.aat0491

    53. [53]

      Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2, 16098. doi: 10.1038/natrevmats.2016.98

    54. [54]

      Miranda, A.; Halim, J.; Barsoum, M. W.; Lorke. A. Appl. Phys. Lett. 2016, 108, 033102. doi: 10.1063/1.4939971

    55. [55]

      Tang, Q.; Zhou, Z.; Shen, P. J. Am. Chem. Soc. 2012, 134, 16909. doi: 10.1021/ja308463r

    56. [56]

      Lai, S.; Jeon, J.; Jang, S.; Xu, J.; Choi, Y. J.; Park, J.; Hwang, E.; Lee, S. Nanoscale 2015, 7, 19390. doi: 10.1039/C5NR06513E

    57. [57]

      Wang, H.; Wu, Y.; Zhang, J.; Li, G.; Huang, H.; Zhang, X.; Jiang, Q. Mater. Lett. 2015, 160, 537. doi: 10.1016/j.matlet.2015.08.046

    58. [58]

      Zeraati, A. S.; Mirkhani, S. A.; Sun, P.; Naguib, M.; Braun, P. V.; Sundararaj, U. Nanoscale 2021, 13, 3572. doi: 10.1039/d0nr06671k

    59. [59]

      Xu, D.; Li, Z.; Li, L.; Wang, J. Adv. Funct. Mater. 2020, 30, 2000712. doi: 10.1002/adfm.202000712

    60. [60]

      Berdiyorov, G. R. AIP Adv. 2016, 6, 055105. doi: 10.1063/1.4948799

    61. [61]

      Xuan, J.; Wang, Z.; Chen, Y.; Liang, D.; Cheng, L.; Yang, X.; Liu, Z.; Ma, R.; Sasaki, T.; Geng, F. Angew. Chem. Int. Ed. 2016, 55, 14569. doi: 10.1002/anie.201606643

    62. [62]

      Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Casalongue, H. S.; Vinh, D.; Dai, H. J. Am. Chem. Soc. 2011, 133, 6825. doi: 10.1021/ja2010175

    63. [63]

      Hantanasirisakul, K.; Zhao, M.; Urbankowski, P.; Halim, J.; Anasori, B.; Kota, S.; Ren, C. E.; Barsoum, M. W.; Gogotsi, Y. Adv. Electron. Mater. 2016, 2, 1600050. doi: 10.1002/aelm.201600050

    64. [64]

      Dillon, A. D.; Ghidiu, M. J.; Krick, A. L.; Griggs, J.; May, S. J.; Gogotsi, Y.; Barsoum, M. W.; Fafarman, A. T. Adv. Funct. Mater. 2016, 26, 4162. doi: 10.1002/adfm.201600357

    65. [65]

      Natu, V.; Sokol, M.; Verger, L.; Barsoum, M. W. J. Phys. Chem. C 2018, 122, 27745. doi: 10.1021/acs.jpcc.8b08860

    66. [66]

      Naguib, M.; Mashtalir, O.; Lukatskaya, M.; Dyatkin, B.; Zhang, C.; Presser, V.; Gogotsi, Y.; Barsoum, M. W. Chem. Commun. 2014, 50, 7420. doi: 10.1039/c4cc01646g

    67. [67]

      Maleski, K.; Mochalin, V. N.; Gogotsi, Y. Chem. Mater. 2017, 29, 1632. doi: 10.1021/acs.chemmater.6b04830

    68. [68]

      朱亚楠, 逄增媛, 葛明桥. 化工新型材料, 2020, 48, 102. doi: 10.19817/j.cnki.issn1006-3536.2020.01.023Zhu, Y.; Pang, Z.; Ge M. New Chem. Mater. 2020, 48, 102. doi: 10.19817/j.cnki.issn1006-3536.2020.01.023

    69. [69]

      Uzun, S.; Seyedin, S.; Stoltzfus, A. L.; Levitt, A. S.; Alhabeb, M.; Anayee, M.; Strobel, C. J.; Razal, J. M.; Dion, G.; Gogotsi, Y. Adv. Funct. Mater. 2019, 29, 1905015. doi: 10.1002/adfm.201905015

    70. [70]

      Levitt, A.; Hegh, D.; Phillips, P.; Uzun, S.; Anayee, M.; Razal, J. M.; Gogotsi, Y.; Dion, G. Mater. Today 2020, 34, 17. doi: 10.1016/j.mattod.2020.02.005

    71. [71]

      Pu, J.; Zhao, X.; Zha, X.; Bai, L.; Ke, K.; Bao, R.; Liu, Z.; Yang, M.; Yang, W. J. Mater. Chem. A 2019, 7, 15913. doi: 10.1039/c9ta04352g

    72. [72]

      Hu, M.; Li, Z.; Li, G.; Hu, T.; Zhang, C.; Wang, X. Adv. Mater. Technol. 2017, 2, 1700143. doi: 10.1002/admt.201700143

    73. [73]

      Shi, B.; Li, L.; Chen, A.; Liu, X.; Shen, G. Nano‑Micro Lett. 2022, 14, 34. doi: 10.1007/s40820-021-00757-6

    74. [74]

      Zhang, J.; Seyedin, S.; Gu, Z.; Yang, W.; Wang, X.; Razal, J. M. Nanoscale 2017, 9, 18604. doi: 10.1039/c7nr06619h

    75. [75]

      Yuan, X.; Jiang, J.; Wei, H.; Yuan, C.; Wang, M.; Zhang, D.; Liu, L.; Huang, Y.; Gao, G.; Jiang, Z. Compos. Sci. Technol. 2021, 201, 108496. doi: 10.1016/j.compscitech.2020.108496

    76. [76]

      Ericson, L. M.; Fan, H.; Peng, H. Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y.; Booker, R.; Vavro, J.; Guthy, C.; et al. Science 2004, 305, 1447. doi: 10.1126/science.1101398

    77. [77]

      Li, S.; Li, Y.; Shao, Y.; Wang, H. Adv. Fiber Mater. 2022, 4, 129. doi: 10.1007/s42765-021-00111-w

    78. [78]

      Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Adv. Mater. 2013, 25, 188. doi: 10.1002/adma.201203448

    79. [79]

      夏洲, 邵元龙. 物理化学学报, 2022, 38, 2103046. doi: 10.3866/PKU.WHXB202103046Xia, Z.; Shao, Y. Acta Phys. -Chim. Sin. 2022, 38, 2103046. doi: 10.3866/PKU.WHXB202103046

    80. [80]

      Seyedin, S.; Zhang, J.; Usman, K. A. S.; Qin, S.; Glushenkov, A. M.; Yanza, E. R. S.; Jones, R. T.; Razal, J. M. Global Challenges 2019, 3, 1900037. doi: 10.1002/gch2.201900037

    81. [81]

      Cheng, B.; Wu, P. ACS Nano 2021, 15, 8676. doi: 10.1021/acsnano.1c00749

    82. [82]

      Zhang, J.; Seyedin, S.; Qin, S.; Wang, Z.; Moradi, S.; Yang, F.; Lynch, P. A.; Yang, W.; Liu, J.; Wang, X.; Razal, J. M. Small 2019, 15, 1804732. doi: 10.1002/smll.201804732

    83. [83]

      Lee, S. H.; Eom, W.; Shin, H. Ambade, R. B.; Bang, J. H.; Kim, H. W.; Han, T. H. ACS Appl. Mater. Interfaces 2020, 12, 10434. doi: 10.1021/acsami.9b21765

    84. [84]

      Yang, Q.; Xu, Z.; Fang, B.; Huang, T.; Cai, S.; Chen, H.; Liu, Y.; Gopalsamy, K.; Gao, W.; Gao, C. J. Mater. Chem. A 2017, 5, 22113. doi: 10.1039/c7ta07999k

    85. [85]

      Shin, H.; Eom, W.; Lee, K. H.; Jeong, W.; Kang, D. J.; Han, T. H. ACS Nano 2021, 15, 3320. doi: 10.1021/acsnano.0c10255

    86. [86]

      Zhang, J.; Uzun, S.; Seyedin, S.; Lynch, P. A.; Akuzum, B.; Wang, Z.; Qin, S.; Alhabeb, M.; Shuck, C. E.; Lei, W.; et al. ACS Cent. Sci. 2020, 6, 254. doi: 10.1021/acscentsci.9b01217

    87. [87]

      Hwang H.; Byun, S.; Yuk, S.; Kim, S.; Song, S. H.; Lee, D. Appl. Surf. Sci. 2021, 556, 149710. doi: 10.1016/j.apsusc.2021.149710

    88. [88]

      Seo, D.; Kim, M.; Song, J. K.; Kim, E.; Koo, J.; Kim, K. C.; Han, H.; Lee, Y.; Ahn, C. W. ChemElectroChem 2022, 9, e202101344. doi: 10.1002/celc.202101344

    89. [89]

      Mayerberger, E. A.; Urbanek, O.; McDaniel, R. M.; Street, R. M.; Barsoum, M. W.; Schauer, C. L. J. Appl. Polym. Sci. 2017, 134, 45295. doi: 10.1002/APP.45295

    90. [90]

      Wang, D.; Zhang, D.; Li, P.; Yang, Z.; Mi, Q.; Yu, L. Nano-Micro Lett. 2021, 13, 57. doi: 10.1007/s40820-020-00580-5

    91. [91]

      Yang, K.; Yin, F.; Xia, D.; Peng, H.; Yang, J.; Yuan, W. Nanoscale 2019, 11, 9949. doi: 10.1039/c9nr00488b

    92. [92]

      Jia, Z.; Li, Z.; Ma, S.; Zhang, W.; Chen, Y.; Luo, Y.; Jia, D.; Zhong, B.; Razal, J. M.; Wang, X.; et al. J. Colloid Interface Sci. 2021, 584, 1. doi: 10.1016/j.jcis.2020.09.035

    93. [93]

      Levitt, A.; Seyedin, S.; Zhang, J.; Wang, X.; Razal, J. M.; Dion, G.; Gogotsi, Y. Small 2020, 16, 2002158. doi: 10.1002/smll.202002158

    94. [94]

      Xin, M.; Li, J.; Ma, Z.; Pan, L.; Shi, Y. Front. Chem. 2020, 8, 297. doi: 10.3389/fchem.2020.00297

    95. [95]

      Lan, L.; Jiang, C.; Yao, Y.; Ping, J.; Ying, Y. Nano Energy 2021, 84, 105954. doi: 10.1016/j.nanoen.2021.105954

    96. [96]

      Wu, G.; Yang, Z.; Zhang, Z.; Ji, B.; Hou, C.; Li, Y.; Jia, W.; Zhang, Q.; Wang, H. Electrochim. Acta 2021, 395, 139141. doi: 10.1016/j.electacta.2021.139141

    97. [97]

      Deng, C.; Zhao, S.; Su, E.; Li, Y.; Wu, F. Adv. Mater. Technol. 2021, 6, 2100574. doi: 10.1002/admt.202100574

    98. [98]

      Salauddin, M.; Rana, S. M. S.; Rahman, M. T.; Sharifuzzaman, M.; Maharjan, P.; Bhatta, T.; Cho, H.; Lee, S. H.; Park, C.; Shrestha, K.; et al. Adv. Funct. Mater. 2022, 32, 2107143. doi: 10.1002/adfm.202107143

    99. [99]

      Ghosh, R.; Singh, A.; Santra, S.; Ray, S. K.; Chandra, A.; Guha, P. K. Sensors Actuat. B Chem. 2014, 205, 67. doi: 10.1016/j.snb.2014.08.044

    100. [100]

      Tang, Y.; Xu, Y.; Yang, J.; Song, Y.; Yin, F.; Yuan, W. Sens. Actuators B-Chem. 2021, 346, 130500. doi: 10.1016/j.snb.2021.130500

    101. [101]

      Römer, F. M.; Wiedwald, U.; Strusch, T.; Halim, J.; Mayerberger, E.; Barsoumb, M. W.; Farle, M. RSC Adv. 2017, 7, 13097. doi: 10.1039/C6RA27505B

    102. [102]

      Wang, L.; Tian, M.; Zhang, Y.; Sun, F.; Qi, X.; Liu, Y.; Qu, L. J. Mater. Sci. 2020, 55, 6187. doi: 10.1007/s10853-020-04425-9

    103. [103]

      Ma, X.; Jiang, Z.; Lin, Y. J. Semicond. 2021, 42, 101602. doi: 10.1088/1674-4926/42/10/101602

    104. [104]

      Wang, Y.; Zheng, Y.; Zhao, J.; Li, Y. Energy Storage Mater. 2020, 33, 82. doi: 10.1016/j.ensm.2020.06.018

    105. [105]

      Li, H.; Shao, F.; Wen, X.; Ding, Y.; Zhou, C.; Zhang, Y.; Wei, H.; Hu, N. Electrochim. Acta 2021, 371, 137838. doi: 10.1016/j.electacta.2021.137838

    106. [106]

      Wu, G.; Sun, S.; Zhu, X.; Ma, Z.; Zhang, Y.; Bao, N. Angew. Chem. Int. Ed. 2021, 61, e202115559. doi: 10.1002/anie.202115559

    107. [107]

      Seyedin, S.; Yanza, E. R. S.; Razal, J. M. J. Mater. Chem. A 2017, 5, 24076. doi: 10.1039/c7ta08355f

    108. [108]

      郭子娇, 李悦, 张瑞, 陆赞. 纺织学报, 2022, 43, 74. doi: 10.13475/j.fzxb.20211102607Guo, Z.; Li, Y.; Zhang, R.; Lu, Z. J. Textile Res. 2022, 43, 74. doi: 10.13475/j.fzxb.20211102607

    109. [109]

      Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Science 2016, 353, 1137. doi: 10.1126/science.aag2421

    110. [110]

      Han, M.; Yin, X.; Hantanasirisakul, K.; Li, X.; Iqbal, A.; Hatter, C. B.; Anasori, B.; Koo, C. M.; Torita, T.; Soda, Y.; et al. Adv. Opt. Mater. 2019, 7, 1900267. doi: 10.1002/adom.201900267

    111. [111]

      Wang, Q.; Zhang, H.; Liu, J.; Zhao, S.; Xie, X.; Liu, L.; Yang, R.; Koratkar, N.; Yu, Z. Adv. Funct. Mater. 2019, 29, 1806819. doi: 10.1002/adfm.201806819

    112. [112]

      Liu, L.; Chen, W.; Zhang, H.; Wang, Q.; Guan, F.; Yu, Z. Adv. Funct. Mater. 2019, 29, 1905197. doi: 10.1002/adfm.201905197

    113. [113]

      Zheng, Y.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D.; Shi, X.; Zhang, B.; Liu, C.; Shen, C. Chem. Eng. J. 2021, 420, 127720. doi: 10.1016/j.cej.2020.127720

    114. [114]

      Zheng, X.; Shen, J.; Hu, Q.; Nie, W.; Wang, Z.; Zhou, L.; Li, C. Nanoscale 2021, 13, 1832. doi: 10.1039/d0nr07433k

  • 加载中
计量
  • PDF下载量:  50
  • 文章访问数:  1690
  • HTML全文浏览量:  380
文章相关
  • 发布日期:  2022-09-15
  • 收稿日期:  2022-04-30
  • 接受日期:  2022-05-30
  • 修回日期:  2022-05-27
  • 网络出版日期:  2022-06-07
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章