Citation: Yuanhao Shen, Qingyu Wang, Jie Liu, Cheng Zhong, Wenbin Hu. Spontaneous Reduction and Adsorption of K3[Fe(CN)6] on Zn Anodes in Alkaline Electrolytes: Enabling a Long-Life Zn-Ni Battery[J]. Acta Physico-Chimica Sinica, ;2022, 38(11): 220404. doi: 10.3866/PKU.WHXB202204048 shu

Spontaneous Reduction and Adsorption of K3[Fe(CN)6] on Zn Anodes in Alkaline Electrolytes: Enabling a Long-Life Zn-Ni Battery

  • Corresponding author: Cheng Zhong, cheng.zhong@tju.edu.cn
  • Received Date: 26 April 2022
    Revised Date: 5 June 2022
    Accepted Date: 19 June 2022
    Available Online: 27 June 2022

    Fund Project: the National Natural Science Foundation of China 52125404the National Natural Science Foundation of China 51722403the Tianjin Natural Science Foundation 18JCJQJC46500the Natural Science Foundation of Guangdong Province U1601216

  • In view of the continuously worsening environmental problems, fossil fuels will not be able to support the development of human life in the future. Hence, it is of great importance to work on the efficient utilization of cleaner energy resources. In this case, cheap, reliable, and eco-friendly grid-scale energy storage systems can play a key role in optimizing our energy usage. When compared with lithium-ion and lead-acid batteries, the excellent safety, environmental benignity, and low toxicity of aqueous Zn-based batteries make them competitive in the context of large-scale energy storage. Among the various Zn-based batteries, due to a high open-circuit voltage and excellent rate performance, Zn-Ni batteries have great potential in practical applications. Nevertheless, the intrinsic obstacles associated with the use of Zn anodes in alkaline electrolytes, such as dendrite, shape change, passivation, and corrosion, limit their commercial application. Hence, we have focused our current efforts on inhibiting the corrosion and dissolution of Zn species. Based on a previous study from our research group, the failure of the Zn-Ni battery was caused by the shape change of the Zn anode, which stemmed from the dissolution of Zn and uneven current distribution on the anode. Therefore, for the current study, we selected K3[Fe(CN)6] as an electrolyte additive that would help minimize the corrosion and dissolution of the Zn anode. In the alkaline electrolyte, [Fe(CN)6]3– was reduced to [Fe(CN)6]4– by the metallic Zn present in the Zn-Ni battery. Owing to its low solubility in the electrolyte, K4[Fe(CN)6] adhered to the active Zn anode, thereby inhibiting the aggregation and corrosion of Zn. Ultimately, the shape change of the anode was effectively eliminated, which improved the cycling life of the Zn-Ni battery by more than three times (i.e., from 124 cycles to more than 423 cycles). As for capacity retention, the Zn-Ni battery with the pristine electrolyte only exhibited 40% capacity retention after 85 cycles, while the Zn-Ni battery with the modified electrolyte (i.e., containing K3[Fe(CN)6]) showed 72% capacity retention. Moreover, unlike conventional organic additives that increase electrode polarization, the addition of K3[Fe(CN)6] not only significantly reduced the charge-transfer resistance in a simplified three-electrode system, but also improved the discharge capacity and rate performance of the Zn-Ni battery. Importantly, considering that this strategy was easy to achieve and minimized additional costs, K3[Fe(CN)6], as an electrolyte additive with almost no negative effect, has tremendous potential in commercial Zn-Ni batteries.
  • 加载中
    1. [1]

      Goodenough, J. B. Energy Environ. Sci. 2014, 7, 14. doi: 10.1039/c3ee42613k  doi: 10.1039/c3ee42613k

    2. [2]

      Zhao, Z.; Fan, X.; Ding, J.; Hu, W.; Zhong, C.; Lu, J. ACS Energy Lett. 2019, 4, 2259. doi: 10.1021/acsenergylett.9b01541  doi: 10.1021/acsenergylett.9b01541

    3. [3]

      Ji, J.; Liu, X.; Huang, H.; Jiang, H.; Duan, M.; Liu, B.; Cui, P.; Li, Y.; Li, M. Acta Phys. -Chim. Sin. 2021, 37, 2008095.  doi: 10.3866/PKU.WHXB202008095

    4. [4]

      Xue, Y.; Wang, X.; Zhang, X.; Fang, J.; Xu, Z.; Zhang, Y.; Liu, X.; Liu, M.; Zhu, W.; Zhuang, Z. Acta Phys. -Chim. Sin. 2021, 37, 2009103.  doi: 10.3866/PKU.WHXB202009103

    5. [5]

      Liu, X.; Fan, X.; Liu, B.; Ding, J.; Deng, Y.; Han, X.; Zhong, C.; Hu, W. Adv. Mater. 2021, 33, e2006461. doi: 10.1002/adma.202006461  doi: 10.1002/adma.202006461

    6. [6]

      Han, Y.; Liu, S. -Y.; Cui, L.; Xu, L.; Xie, J.; Xia, X. -K.; Hao, W. -K.; Wang, B.; Li, H.; Gao, J. Int. J. Miner. Metall. Mater. 2018, 25, 88. doi: 10.1007/s12613-018-1550-6  doi: 10.1007/s12613-018-1550-6

    7. [7]

      Shen, Y.; Liu, B.; Liu, X.; Liu, J.; Ding, J.; Zhong, C.; Hu, W. Energy Storage Mater. 2021, 34, 461. doi: 10.1016/j.ensm.2020.10.011  doi: 10.1016/j.ensm.2020.10.011

    8. [8]

      Wang, L.; Chen, G.; Shen, Q.; Li, G.; Guan, S.; Li, B. Int. J. Miner. Metall. Mater. 2018, 25, 1027. doi: 10.1007/s12613-018-1653-0  doi: 10.1007/s12613-018-1653-0

    9. [9]

      Zhao, Z.; Liu, B.; Shen, Y.; Wu, T.; Zang, X.; Zhao, Y.; Zhong, C.; Ma, F.; Hu, W. J. Power Sources 2021, 510, 230393. doi: 10.1016/j.jpowsour.2021.230393  doi: 10.1016/j.jpowsour.2021.230393

    10. [10]

      Lu, Q.; Zou, X.; Liao, K.; Ran, R.; Zhou, W.; Ni, M.; Shao, Z. Carbon Energy 2020, 2, 461. doi: 10.1002/cey2.50  doi: 10.1002/cey2.50

    11. [11]

      Wang, P.; Shi, X.; Wu, Z.; Guo, S.; Zhou, J.; Liang, S. Carbon Energy 2020, 2, 294. doi: 10.1002/cey2.39  doi: 10.1002/cey2.39

    12. [12]

      Wu, J.; Liu, B.; Fan, X.; Ding, J.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. Carbon Energy 2020, 2, 370. doi: 10.1002/cey2.60  doi: 10.1002/cey2.60

    13. [13]

      Yu, L.; Yi, Q.; Yang, X.; Chen, Y. Sci. China Mater. 2019, 62, 1251. doi: 10.1007/s40843-019-9439-9  doi: 10.1007/s40843-019-9439-9

    14. [14]

      Wang, L.; Yang, Z.; Chen, X.; Qin, H.; Yan, P. J. Power Sources 2018, 396, 615. doi: 10.1016/j.jpowsour.2018.06.031  doi: 10.1016/j.jpowsour.2018.06.031

    15. [15]

      Chao, D.; Zhou, W.; Xie, F.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S. -Z. Sci. Adv. 2020, 6, eaba4098. doi: 10.1126/sciadv.aba4098  doi: 10.1126/sciadv.aba4098

    16. [16]

      Zheng, X.; Ahmad, T.; Chen, W. Energy Storage Mater. 2021, 39, 365. doi: 10.1016/j.ensm.2021.04.027  doi: 10.1016/j.ensm.2021.04.027

    17. [17]

      Lai, S. B.; Jamesh, M. I.; Wu, X. C.; Dong, Y. L.; Wang, J. H.; Gao, M.; Liu, J. F.; Sun, X. M. Rare Met. 2017, 36, 381. doi: 10.1007/s12598-017-0905-x  doi: 10.1007/s12598-017-0905-x

    18. [18]

      Renuka, R.; Srinivasan, L.; Ramamurthy, S.; Veluchamy, A.; Venkatakrishnan, N. J. Appl. Electrochem. 2001, 31, 655. doi: 10.1023/A:1017562514934  doi: 10.1023/A:1017562514934

    19. [19]

      Moser, F.; Fourgeot, F.; Rouget, R.; Crosnier, O.; Brousse, T. Electrochim. Acta 2013, 109, 110. doi: 10.1016/j.electacta.2013.07.023  doi: 10.1016/j.electacta.2013.07.023

    20. [20]

      Sato, Y.; Takahashi, M.; Asakura, H.; Yoshida, T.; Tada, K.; Kobayakawa, K.; Chiba, N.; Yoshida, K. J. Power Sources 1992, 38, 317. doi: 10.1016/0378-7753(92)80121-Q  doi: 10.1016/0378-7753(92)80121-Q

    21. [21]

      McLarnon, F. R.; Cairns, E. J. J. Electrochem. Soc. 1991, 138, 645. doi: 10.1149/1.2085653  doi: 10.1149/1.2085653

    22. [22]

      Schröder, D.; Sinai Borker, N. N.; König, M.; Krewer, U. J. Appl. Electrochem. 2015, 45, 427. doi: 10.1007/s10800-015-0817-0  doi: 10.1007/s10800-015-0817-0

    23. [23]

      Zhu, A. L.; Duch, D.; Roberts, G. A.; Li, S. X. X.; Wang, H.; Duch, K.; Bae, E.; Jung, K. S.; Wilkinson, D.; Kulinich , S. A. ChemElectroChem 2015, 2, 134. doi: 10.1002/celc.201402251  doi: 10.1002/celc.201402251

    24. [24]

      Azhagurajan, M.; Nakata, A.; Arai, H.; Ogumi, Z.; Kajita, T.; Itoh, T.; Itaya, K. J. Electrochem. Soc. 2017, 164, A2407. doi: 10.1149/2.0221712jes  doi: 10.1149/2.0221712jes

    25. [25]

      Zhou, H.; Huang, Q.; Liang, M.; Lv, D.; Xu, M.; Li, H.; Li, W. Mater. Chem. Phys. 2011, 128, 214. doi: 10.1016/j.matchemphys.2011.02.061  doi: 10.1016/j.matchemphys.2011.02.061

    26. [26]

      Lin, M.; Huang, C.; Cheng, P.; Cheng, J.; Wang, C. J. Mater. Chem. A 2020, 8, 20637. doi: 10.1039/d0ta06929a  doi: 10.1039/d0ta06929a

    27. [27]

      Sun, K. E. K.; Hoang, T. K. A.; The Nam Long, D.; Zhu, Y. Y. X.; Tian, Y.; Chen, P. ACS Appl. Mater. Interfaces 2017, 9, 9681. doi: 10.1021/acsami.6b16560  doi: 10.1021/acsami.6b16560

    28. [28]

      Hosseini, S.; Abbasi, A.; Uginet, L. O.; Haustraete, N.; Praserthdam, S.; Yonezawa, T.; Kheawhom, S. Sci. Rep. 2019, 9, 14958. doi: 10.1038/s41598-019-51412-5  doi: 10.1038/s41598-019-51412-5

    29. [29]

      Hosseini, S.; Han, S. J.; Arponwichanop, A.; Yonezawa, T.; Kheawhom, S. Sci. Rep. 2018, 8, 11273. doi: 10.1038/s41598-018-29630-0  doi: 10.1038/s41598-018-29630-0

    30. [30]

      Einerhand, R. E. F.; Visscher, W.; de Goeij, J. J. M.; Barendrecht, E. J. Electrochem. Soc. 1991, 138, 1. doi: 10.1149/1.2085538  doi: 10.1149/1.2085538

    31. [31]

      Einerhand, R. E. F.; Visscher, W.; de Goeij, J. J. M.; Barendrecht, E. J. Electrochem. Soc. 1991, 138, 7. doi: 10.1149/1.2085582  doi: 10.1149/1.2085582

    32. [32]

      Horn, Q. C.; Shao-Horn, Y. J. Electrochem. Soc. 2003, 150, A652. doi: 10.1149/1.1566014  doi: 10.1149/1.1566014

    33. [33]

      Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C. Adv. Mater. 2020, 32, 2001854. doi: 10.1002/adma.202001854  doi: 10.1002/adma.202001854

    34. [34]

      Shen, Y.; Xu, L.; Wang, Q.; Zhao, Z.; Dong, Z.; Liu, J.; Zhong, C.; Hu, W. ACS Appl. Mater. Interfaces 2021, 13, 51141. doi: 10.1021/acsami.1c17204  doi: 10.1021/acsami.1c17204

    35. [35]

      Lee, S. -M.; Kim, Y. -J.; Eom, S. -W.; Choi, N. -S.; Kim, K. -W.; Cho, S. -B. J. Power Sources 2013, 227, 177. doi: 10.1016/j.jpowsour.2012.11.046  doi: 10.1016/j.jpowsour.2012.11.046

    36. [36]

      El-Sayed, A. -R.; Mohran, H. S.; Abd El-Lateef, H. M. J. Power Sources 2011, 196, 6573. doi: 10.1016/j.jpowsour.2011.03.057  doi: 10.1016/j.jpowsour.2011.03.057

    37. [37]

      Cheng, Q.; Fan, W.; He, Y.; Ma, P.; Vanka, S.; Fan, S.; Mi, Z.; Wang, D. Adv. Mater. 2017, 29, 1700312. doi: 10.1002/adma.201700312  doi: 10.1002/adma.201700312

    38. [38]

      Lin, K.; Chen, Q.; Gerhardt, M. R.; Tong, L.; Kim, S. B.; Eisenach, L.; Valle, A. W.; David, Hardee, R. G. G.; Aziz, M. J.; Marshak, M. P. Science 2015, 349, 1529. doi: 10.1126/science.aab3033  doi: 10.1126/science.aab3033

    39. [39]

      Lin, K.; Gómez-Bombarelli, R.; Beh, E. S.; Tong, L.; Chen, Q.; Valle, A.; Aspuru-Guzik, A.; Aziz, M. J.; Gordon, R. G. Nat. Energy 2016, 1, 16102. doi: 10.1038/nenergy.2016.102  doi: 10.1038/nenergy.2016.102

    40. [40]

      Forment-Aliaga, A.; Weitz, R. T.; Sagar, A. S.; Lee, E. J.; Konuma, M.; Burghard, M.; Kern, K. Small 2008, 4, 1671. doi: 10.1002/smll.200800803  doi: 10.1002/smll.200800803

    41. [41]

      He, X.; Tian, L.; Qiao, M.; Zhang, J.; Geng, W.; Zhang, Q. J. Mater. Chem. A 2019, 7, 11478. doi: 10.1039/c9ta02265a  doi: 10.1039/c9ta02265a

    42. [42]

      Wang, H.; Yuan, X.; Wu, Y.; Zeng, G.; Chen, X.; Leng, L.; Wu, Z.; Jiang, L.; Li, H. J. Hazard. Mater. 2015, 286, 187. doi: 10.1016/j.jhazmat.2014.11.039  doi: 10.1016/j.jhazmat.2014.11.039

    43. [43]

      Kwak, B. S.; Kim, D. Y.; Park, S. S.; Kim, B. S.; Kang, M. Chem. Eng. J. 2015, 281, 368. doi: 10.1016/j.cej.2015.06.062  doi: 10.1016/j.cej.2015.06.062

    44. [44]

      Pei, Y.; Mu, C.; Li, H.; Li, F.; Chen, J. ChemSusChem 2018, 11, 1285. doi: 10.1002/cssc.201800057  doi: 10.1002/cssc.201800057

    45. [45]

      Hao, P.; Zhu, T.; Su, Q.; Lin, J.; Cui, R.; Cao, X.; Wang, Y.; Pan, A. Front. Chem. 2018, 6, 195. doi: 10.3389/fchem.2018.00195  doi: 10.3389/fchem.2018.00195

    46. [46]

      Wu, Z. -G.; Zhong, Y. -J.; Li, J. -T.; Wang, K.; Guo, X. -D.; Huang, L.; Zhong, B. -H.; Sun, S. -G. RSC Adv. 2016, 6, 54404. doi: 10.1039/c6ra09707c  doi: 10.1039/c6ra09707c

    47. [47]

      Xia, A.; Pu, X.; Tao, Y.; Liu, H.; Wang, Y. Appl. Surf. Sci. 2019, 481, 852. doi: 10.1016/j.apsusc.2019.03.197  doi: 10.1016/j.apsusc.2019.03.197

    48. [48]

      Yan, M.; Xu, C.; Sun, Y.; Pan, H.; Li, H. Nano Energy 2021, 82, 105739. doi: 10.1016/j.nanoen.2020.105739  doi: 10.1016/j.nanoen.2020.105739

    49. [49]

      Zhao, K.; Liu, F.; Fan, G.; Liu, J.; Yu, M.; Yan, Z.; Zhang, N.; Cheng, F. ACS Appl. Mater. Interfaces 2021, 13, 47650. doi: 10.1021/acsami.1c14407  doi: 10.1021/acsami.1c14407

    50. [50]

      Al-Jibbouri, S.; Ulrich, J. Cryst. Res. Technol. 2001, 36, 1365. doi: 10.1002/1521-4079(200112)36:12<1365::AID-CRAT1365>3.0.CO;2-H  doi: 10.1002/1521-4079(200112)36:12<1365::AID-CRAT1365>3.0.CO;2-H

    51. [51]

      Al-Jibbouri, S.; Ulrich, J. J. Cryst. Growth 2002, 234, 237. doi: 10.1016/S0022-0248(01)01656-6  doi: 10.1016/S0022-0248(01)01656-6

    52. [52]

      Skvortsova, Z. N.; Traskin, V. Y. Colloid J. 2018, 80, 349. doi: 10.1134/s1061933x18040129  doi: 10.1134/s1061933x18040129

    53. [53]

      Mohammadi Ghaleni, M.; Al Balushi, A.; Kaviani, S.; Tavakoli, E.; Bavarian, M.; Nejati, S. ACS Appl. Mater. Interfaces 2018, 10, 44871. doi: 10.1021/acsami.8b16621  doi: 10.1021/acsami.8b16621

    54. [54]

      Hunke, H.; Soin, N.; Shah, T.; Kramer, E.; Pascual, A.; Karuna, M.; Siores, E. Materials 2015, 8, 2258. doi: 10.3390/ma8052258  doi: 10.3390/ma8052258

  • 加载中
    1. [1]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    2. [2]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    3. [3]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    4. [4]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    5. [5]

      Wenfeng ShaoChuanlin LiChenggang WangGuangsen DuShunshun ZhaoGuangmeng QuYupeng XingTianshuo GuoHongfei LiXijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531

    6. [6]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    7. [7]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    8. [8]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    9. [9]

      Zhuangzhuang ZhangYaru QiaoJun ZhaoDai-Huo LiuMengmin JiaHongwei TangLiang WangDongmei DaiBao Li . Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode. Chinese Chemical Letters, 2025, 36(3): 109907-. doi: 10.1016/j.cclet.2024.109907

    10. [10]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    11. [11]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    12. [12]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    15. [15]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    16. [16]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    17. [17]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    18. [18]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    19. [19]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    20. [20]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

Metrics
  • PDF Downloads(27)
  • Abstract views(1132)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return