Citation: Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance[J]. Acta Physico-Chimica Sinica, ;2023, 39(2): 211103. doi: 10.3866/PKU.WHXB202111037 shu

Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance

  • Corresponding author: Yixiao Zhang, yxzhang2019@sjtu.edu.cn Liwei Chen, lwchen2018@sjtu.edu.cn
  • Received Date: 29 November 2021
    Revised Date: 28 December 2021
    Accepted Date: 30 December 2021
    Available Online: 15 January 2022

    Fund Project: the National Natural Science Foundation of China 21991153the National Natural Science Foundation of China 21991150

  • Fuel cells are essential energy conversion devices for future renewable energy structures. Mainstream proton exchange membrane fuel cells (PEMFCs) generally exhibit satisfactory performance despite requiring noble metal catalysts to be stable in acidic environments. Alkaline polymer electrolyte fuel cells (APEFCs), in contrast, offer the benefit of employing non-noble metal catalysts in fuel cells, but their overall performance and especially their long-term stability require further improvement. A critical component within APEFCs is the membrane electrode assembly (MEA), which comprises a hydroxide ion conductive polymer membrane, a cathode, and an anode (including a catalyst layer and a gas diffusion layer). MEA is where electrochemical reactions occur; thus, it plays a crucial role in determining fuel cell performance. Herein, the fabrication of a cone-shaped array on the surface of an alkaline polymer electrolyte membrane for improving the overall device performance is presented. The cone array was prepared using a sacrificial anodic aluminum oxide (AAO) template, and the array side of the polymer electrolyte was used as the cathode to construct the MEA, denoted as A-MEA. The control sample with no cone arrays on the polymer electrolyte surface is denoted as P-MEA. The Pt loadings on both the anode and cathode sides were approximately 0.2 mg∙cm−2. APEFCs with A-MEA and P-MEA were separately assembled and tested in an 850e Fuel Cell Test System at a cell temperature of 80 ℃. Fully humidified hydrogen and oxygen were both supplied at a flow rate of 1000 mL·min−1. The back pressure for both the anode and the cathode was 0.2 MPa. As a result, the APEFC with A-MEA exhibited a higher peak power density than that of the APEFC with P-MEA (1.48 vs. 1.04 W∙cm−2). The enhanced electrochemical performance of the APEFC with A-MEA was ascribed to the array-structured cathode, which improved the hydrophilicity of the polymer electrolyte membrane and increased the utilization efficiency of the catalyst. The hydrophilicity of the polymer electrolyte membrane with cone arrays was confirmed using contact angle measurements. The contact angles of the membranes with and without cone arrays were ~0° and 70.8°, respectively. The hydrophilic membrane promotes the electrode reaction at the cathode side. The electrochemically active surface area (ECSA) was also measured using cyclic voltammetry (CV) between 0.08 and 1 V (vs. reversible hydrogen electrode, RHE) at a scan rate of 20 mV∙s-1, using fully humidified H2 and N2. A flow rate of 1000 mL∙min−1 and back pressure of 0 MPa were employed. Results revealed that the ECSA of the cathode without the array was smaller than that of the array-structured cathode (21.17 vs. 24.89 m2∙g−1), indicating that the array structure improved the catalyst utilization efficiency compared to that of the control sample. This study provides an effective strategy for the structural design and optimization of the MEAs in APEFCs.
  • 加载中
    1. [1]

      Stern, P. C.; Sovacool, B. K.; Dietz, T. Nat. Clim. Change 2016, 6 (6), 547. doi: 10.1038/NCLIMATE3027  doi: 10.1038/NCLIMATE3027

    2. [2]

      Schrag, D. P. Elements 2007, 3 (3), 171. doi: 10.2113/gselements.3.3.171  doi: 10.2113/gselements.3.3.171

    3. [3]

      Schultz, M. G.; Diehl, T.; Brasseur, G. P.; Zittel, W. Science 2003, 302 (5645), 624. doi: 10.1126/science.1089527  doi: 10.1126/science.1089527

    4. [4]

      Liang, J.; Liu, X.; Li, Q. Acta Phys. -Chim. Sin. 2021, 37 (9), 2010072.  doi: 10.3866/PKU.WHXB202010072

    5. [5]

      Wang, J.; Ding, W.; Wei, Z. Acta Phys. -Chim. Sin. 2021, 37 (9), 2009094.  doi: 10.3866/PKU.WHXB202009094

    6. [6]

      Ralph, T. R.; Hogarth, M. P. Platin Met. Rev. 2002, 46 (3), 117. doi: 10.3390/books978-3-03842-659-2  doi: 10.3390/books978-3-03842-659-2

    7. [7]

      Hickner, M. A.; Herring, A. M.; Coughlin, E. B. J. Polym. Sci. Part Polym. Phys. 2013, 51 (24), 1727. doi: 10.1002/polb.23395  doi: 10.1002/polb.23395

    8. [8]

      Mehta, V.; Cooper, J. S. J. Power Sources 2003, 114 (1), 32. doi: 10.1016/S0378-7753(02)00542-6  doi: 10.1016/S0378-7753(02)00542-6

    9. [9]

      Han, A.; Yan, X.; Chen, J.; Cheng, X.; Zhang, J. Acta Phys. -Chim. Sin. 2022, 38 (3), 1912052.  doi: 10.3866/PKU.WHXB201912052

    10. [10]

      Ding, L.; Tang, T.; Hu, J. Acta Phys. -Chim. Sin. 2021, 37 (9), 2010048.  doi: 10.3866/PKU.WHXB202010048

    11. [11]

      Wang, Y.; Li, L.; Hu, L.; Zhuang, L.; Lu, J.; Xu, B. Electrochem. Commun. 2003, 5 (8), 662. doi: 10.1016/S1388-2481(03)00148-6  doi: 10.1016/S1388-2481(03)00148-6

    12. [12]

      Xue, Y.; Wang, X.; Zhang, X.; Fang, J.; Xu, Z.; Zhang, Y.; Liu, X.; Liu, M.; Zhu, W.; Zhuang, Z. Acta Phys. -Chim. Sin. 2021, 37 (9), 2009103.  doi: 10.3866/PKU.WHXB202009103

    13. [13]

      Huang, G.; Mandal, M.; Peng, X.; Yang-Neyerlin, A. C.; Pivovar, B. S.; Mustain, W. E.; Kohl, P. A. J. Electrochem. Soc. 2019, 166 (10), F637. doi: 10.1149/2.1301910jes  doi: 10.1149/2.1301910jes

    14. [14]

      Hou, H. Acta Phys. -Chim. Sin. 2014, 30 (8), 1393.  doi: 10.3866/PKU.WHXB201406171

    15. [15]

      Li, N.; Leng, Y.; Hickner, M. A.; Wang, C. J. Am. Chem. Soc. 2013, 135, 10124. doi: 10.1021/ja403671u  doi: 10.1021/ja403671u

    16. [16]

      Wang, L.; Brink, J. J.; Varcoe, J. R. Chem. Commun. 2017, 53, 11771. doi: 10.1039/c7cc06392j  doi: 10.1039/c7cc06392j

    17. [17]

      Chen, S.; Peng, H.; Hu, M.; Wang, G.; Xiao, L.; Lu, J.; Zhuang, L. ACS Appl. Energy Mater. 2021, 4 (5), 4297. doi: 10.1021/acsaem.1c00433  doi: 10.1021/acsaem.1c00433

    18. [18]

      Peng, H.; Li, Q.; Hu, M.; Xiao, L.; Lu, J.; Zhuang, L. J. Power Sources 2018, 390, 165. doi: 10.1016/j.jpowsour.2018.04.047  doi: 10.1016/j.jpowsour.2018.04.047

    19. [19]

      Klingele, M.; Britton, B.; Breitwieser, M.; Vierrath, S.; Zengerle, R.; Holdcroft, S.; Thiele, S. Electrochem. Commun. 2016, 70, 65. doi: 10.1016/j.elecom.2016.06.017  doi: 10.1016/j.elecom.2016.06.017

    20. [20]

      Kim, K. H; Lee, K. Y.; Kim, H. J.; Cho, E. Lee, S. Y.; Lim T. H.; Yoon, S. P.; Hwang I. C.; Jang, J. H. Int. J. Hydrogen Energy 2010, 35 (5), 2119. doi: 10.1016/j.ijhydene.2009.11.058  doi: 10.1016/j.ijhydene.2009.11.058

    21. [21]

      Debe, M. K. Nature 2012, 486 (7401), 43. doi: 10.1038/nature11115  doi: 10.1038/nature11115

    22. [22]

      Gottesfeld, S.; Dekel, D. R.; Page, M.; Page, M.; Bae, C. Yan, Y.; Zelenay, P.; Kim, Y. J. Power Sources 2018, 375, 170. doi: 10.1016/j.jpowsour.2017.08.010  doi: 10.1016/j.jpowsour.2017.08.010

    23. [23]

      Zhang, J.; Wang, Y.; Zhang, J.; Xu, L. Acta Phys. -Chim. Sin. 2015, 31 (12), 2316.  doi: 10.3866/PKU.WHXB20151022

    24. [24]

      Liu, C. Y.; Sung, C. C. J. Power Sources 2012, 220, 348. doi: 10.1016/j.jpowsour.2012.07.090  doi: 10.1016/j.jpowsour.2012.07.090

    25. [25]

      Moreira, J.; Ocampo, A. L.; Sebastian, P. J.; Smit, M. A.; Salazar, M. D.; Angel, P. D.; Montoya, J. A.; Pérez, R.; Martínez, L. Int. J. Hydrogen Energy 2003, 28 (6), 625. doi: 10.1016/S0360-3199(02)00143-X  doi: 10.1016/S0360-3199(02)00143-X

    26. [26]

      Lobato, J.; Rodrigo, M. A.; Linares, J. J.; Scott, K. J. Power Sources 2002, 157 (2006), 284. doi: 10.1016/j.jpowsour.2005.07.040  doi: 10.1016/j.jpowsour.2005.07.040

    27. [27]

      Chen, M.; Wang, M.; Yang, Z.; Wang, X. Appl. Surf. Sci. 2017, 406, 69. doi: 10.1016/j.apsusc.2017.01.296  doi: 10.1016/j.apsusc.2017.01.296

    28. [28]

      Wang, G.; Zou, L.; Huang, Q.; Zou, Z. Yang, H. J. Mater. Chem. A 2019, 7 (16), 9447. doi: 10.1039/c8ta12382a  doi: 10.1039/c8ta12382a

    29. [29]

      Zhang, W.; Minett, A. I.; Gao, M.; Zhao, J.; Razal, J. M.; Wallace, G. G.; Romeo, T.; Chen, J. Adv. Energy Mater. 2011, 1 (4), 671. doi: 10.1002/aenm.201100092  doi: 10.1002/aenm.201100092

    30. [30]

      Zhang, C.; Yu, H.; Li, Y.; Gao, Y.; Zhao, Y.; Song, W.; Shao, Z.; Yi, B. ChemSusChem 2013, 6 (4), 659. doi: 10.1002/cssc.201200828  doi: 10.1002/cssc.201200828

    31. [31]

      Ning, F.; Bai, C.; Qin, J.; Song, Y.; Zhang, T.; Chen, J.; Wei, J.; Lu, G.; Wang, H.; Li, Y.; et al. J. Mater. Chem. A 2020, 8 (11), 5489. doi: 10.1039/c9ta13666e  doi: 10.1039/c9ta13666e

    32. [32]

      Dekel, D. R.; Rasion I, G.; Page, M.; Brandon, S. J. Power Sources 2018, 375, 191. doi: 10.1016/j.jpowsour.2017.07.012  doi: 10.1016/j.jpowsour.2017.07.012

    33. [33]

      Sheng, W.; Zhuang, Z.; Gao, M.; Zheng, J.; Chen, J.; Yan, Y. Nat. Commun. 2015, 6 (1), 1. doi: 10.1038/ncomms6848  doi: 10.1038/ncomms6848

    34. [34]

      Essalik, A.; Amouzegar, K.; Savadogo, O. J. Appl. Electrochem. 1995, 25, 404. doi: 10.1007/BF00249660  doi: 10.1007/BF00249660

  • 加载中
    1. [1]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

    2. [2]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    3. [3]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    4. [4]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    6. [6]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    7. [7]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    8. [8]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    12. [12]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    13. [13]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    14. [14]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    15. [15]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    20. [20]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

Metrics
  • PDF Downloads(20)
  • Abstract views(1408)
  • HTML views(276)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return