Citation: Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates[J]. Acta Physico-Chimica Sinica, ;2022, 38(6): 210600. doi: 10.3866/PKU.WHXB202106003 shu

Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates

  • Corresponding author: Haiqing Wang, ifc_wanghq@ujn.edu.cn Hong Liu, ifc_liuh@ujn.edu.cn
  • Received Date: 2 June 2021
    Revised Date: 2 July 2021
    Accepted Date: 15 July 2021
    Available Online: 23 July 2021

    Fund Project: the National Key Research and Development Program of China 2017YFB0405400the Shandong Provincial Natural Science Foundation, China ZR2019BB025the Project of "20 items of University" of Jinan, China 2018GXRC031

  • The storage and conversion of renewable energy through electrocatalysis is of considerable significance for improving the energy structure, protecting the ecological environment, and achieving the national strategy of carbon peaking and carbon neutrality. The development of low-cost and high-efficiency electrocatalysts has become a major scientific challenge worldwide. Microorganisms are widely found in nature and are characterized by their rich structure, composition and metabolism. These properties facilitate their use as intelligent templates for electrocatalyst structures and as sources of non-metallic elements such as carbon, phosphorus, sulfur, as well as metallic elements. The use of microorganisms in electrocatalyst production has become a new trend owing to the advantages of non-toxicity, reproducible production, and ease of scaling up. Thus, this paper reviews the development of microbial "intelligence" guided preparation of electrocatalysts and their current applications in the fields of hydrogen evolution reactions, oxygen evolution reactions, oxygen reduction reactions, carbon dioxide reductions and lithium batteries. In order to achieve the function of "intelligent" guidance of microorganisms, four aspects need to be addressed: (1) the selection of suitable microbial species and the culture and activation conditions, which significantly helps in tailoring the microbial properties for specific applications; (2) the exploration of microbial species that can accumulate metal species from their living environment and thus produce metal nanoparticles, which will help obtain nanocomposites with desired properties; (3) the selection of compounds with good catalytic properties, high stability, and compatibility with microbial substrates; and (4) the development of highly controllable nanocatalysts through modern molecular biology and genetic engineering to regulate microbial life processes such as metabolic proliferation and apoptosis. With the resolution of these issues, we believe that the application of microbial intelligent templates guided electrocatalysts can be further extended to other electrocatalytic reactions such as ethanol oxidation reactions (EOR), nitrogen reduction reactions (NRR), and to other applications in fields such as electronics, sensing, imaging, and biomedicine. The goal of this review is to promote a deeper understanding of the correlations among microbial metabolism, catalyst micro-nano structures and structure-activity relationships. Furthermore, the challenges associated with such materials and the prospects for future development are discussed herein.
  • 加载中
    1. [1]

      Peng, P.; Zhou, Z.; Guo, J.; Xiang, Z. ACS Energy Lett. 2017, 2 (6), 1308. doi: 10.1021/acsenergylett.7b00267  doi: 10.1021/acsenergylett.7b00267

    2. [2]

      Xiao, W.; Lei, W.; Gong, M.; Xin, H. L.; Wang, D. ACS Catal. 2018, 8 (4), 3237. doi: 10.1021/acscatal.7b04420  doi: 10.1021/acscatal.7b04420

    3. [3]

      Grigoriev, S. A.; Mamat, M. S.; Dzhus, K. A.; Walker, G. S.; Millet, P. Int. J. Hydrogen Energ. 2011, 36 (6), 4143. doi: 10.1016/j.ijhydene.2010.07.013  doi: 10.1016/j.ijhydene.2010.07.013

    4. [4]

      Bard, A. J. J. Am. Chem. Soc. 2010, 132 (22), 7559. doi: 10.1021/ja101578m  doi: 10.1021/ja101578m

    5. [5]

      Zhao, S.; Wang, D. W.; Amal, R.; Dai, L. Adv. Mater. 2019, 31 (9), 1801526. doi: 10.1002/adma.201801526  doi: 10.1002/adma.201801526

    6. [6]

      Ma, Y.; Guan, G.; Hao, X.; Cao, J. Renew. Sust. Energ. Rev. 2017, 75, 1101. doi: 10.1016/j.rser.2016.11.092  doi: 10.1016/j.rser.2016.11.092

    7. [7]

      Li, Y.; Dong, Z.; Jiao, L. Adv. Energy Mater. 2020, 10 (11), 1902104. doi: 10.1002/aenm.201902104  doi: 10.1002/aenm.201902104

    8. [8]

      Logan, S. R.; Moss, R. L.; Kemball, C. Trans. Faraday Soc. 1958, 54, 922. doi: 10.1039/TF9585400922  doi: 10.1039/TF9585400922

    9. [9]

      Alexander, A. M.; Hargreaves, J. S. J. Chem. Soc. Rev. 2010, 39 (11), 4388. doi: 10.1039/B916787K  doi: 10.1039/B916787K

    10. [10]

      Min, H. Microbiology; Zhejiang University Press: Hangzhou, 2005.

    11. [11]

      Alberts, B.; Bray, D.; Hopkins, K.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Essential Cell Biology; Garland Press: Shrewsbury, 1998.

    12. [12]

      Zhai, Z. H.; Wang, X. Z.; Ding, M. X. Cell Biology; Higher Education Press: Beijing, 2011.

    13. [13]

      Anam, M. B.; Istiaq, A.; Kariya, R.; Kudo, M.; Ishtiyaq Ahmad, S. A.; Ito, N.; Okada, S.; Ohta, K. Biochem. Biophys. Rep. 2021, 26, 100946. doi: 10.1016/j.bbrep.2021.100946  doi: 10.1016/j.bbrep.2021.100946

    14. [14]

      Wang, Q.; Yang, J.; Zhou, X.; Tang, J.; Zhong, H.; Jia, M.; Cui, M.; Jiang, M.; Wang, H. J. Electrochem. Soc. 2019, 166 (4), A704. doi: 10.1149/2.0901904jes  doi: 10.1149/2.0901904jes

    15. [15]

      Guo, Z.; Ren, G.; Jiang, C.; Lu, X.; Zhu, Y.; Jiang, L.; Dai, L. Sci. Rep. 2015, 5 (1), 17064. doi: 10.1038/srep17064  doi: 10.1038/srep17064

    16. [16]

      Varman, A. M.; He, L.; You, L.; Hollinshead, W.; Tang, Y. J. Microb. Cell Fact. 2014, 13 (1), 42. doi: 10.1186/1475-2859-13-42  doi: 10.1186/1475-2859-13-42

    17. [17]

      Zhou, W. J.; Xiong, T. L.; Shi, C. H.; Zhou, J.; Zhou, K.; Zhu, N. W.; Li, L. G.; Tang, Z. H.; Chen, S. W. Angew. Chem. Int. Edit. 2016, 55 (29), 8416. doi: 10.1002/anie.201602627  doi: 10.1002/anie.201602627

    18. [18]

      Markou, G.; Mitrogiannis, D.; Çelekli, A.; Bozkurt, H.; Georgakakis, D.; Chrysikopoulos, C. V. Chem. Eng. J. 2015, 259, 806. doi: 10.1016/j.cej.2014.08.037  doi: 10.1016/j.cej.2014.08.037

    19. [19]

      Zhang, X. R. Acta Microbiol. Sin. 2011, (03), 12. doi: 10.3969/j.issn.1003-1634.2008.04.011  doi: 10.3969/j.issn.1003-1634.2008.04.011

    20. [20]

      Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E.; et al. Chem. Rev. 2019, 119 (8), 4819. doi: 10.1021/acs.chemrev.8b00733  doi: 10.1021/acs.chemrev.8b00733

    21. [21]

      Gahlawat, G.; Choudhury, A. R. RSC Adv. 2019, 9 (23), 12944. doi: 10.1039/C8RA10483B  doi: 10.1039/C8RA10483B

    22. [22]

      Lee, L. A.; Nguyen, H. G.; Wang, Q. Org. Biomol. Chem. 2011, 9 (18), 6189. doi: 10.1039/C1OB05700F  doi: 10.1039/C1OB05700F

    23. [23]

      Heldal, M.; Norland, S.; Tumyr, O. Appl. Environ. Microb. 1985, 50 (5), 1251. doi: 10.1128/aem.50.5.1251-1257.1985  doi: 10.1128/aem.50.5.1251-1257.1985

    24. [24]

      Klaus-Joerger, T.; Joerger, R.; Olsson, E.; Granqvist, C. G. Trends Biotechnol. 2001, 19 (1), 15. doi: 10.1016/S0167-7799(00)01514-6  doi: 10.1016/S0167-7799(00)01514-6

    25. [25]

      Russo, E. Nature 2003, 421 (6921), 456. doi: 10.1038/nj6921-456a  doi: 10.1038/nj6921-456a

    26. [26]

      Faramarzi, M. A.; Sadighi, A. Adv. Colloid Interfaces 2013, 189–190, 1. doi: 10.1016/j.cis.2012.12.001

    27. [27]

      Trevors, J. T. Ation. Leeuw. Int. J. G. 1997, 71 (3), 257. doi: 10.1023/A:1000175217677  doi: 10.1023/A:1000175217677

    28. [28]

      Beveridge, T. J.; Murray, R. G. J. Bacteriol. 1980, 141 (2), 876. doi: 10.1128/jb.141.2.876-887.1980  doi: 10.1128/jb.141.2.876-887.1980

    29. [29]

      Srivastava, S. K.; Constanti, M. J. Nanopart. Res. 2012, 14 (4), 831. doi: 10.1007/s11051-012-0831-7  doi: 10.1007/s11051-012-0831-7

    30. [30]

      Wang, T.; Zhu, J.; Wei, Z.; Yang, H.; Ma, Z.; Ma, R.; Zhou, J.; Yang, Y.; Peng, L.; Fei, H.; Lu, B.; Duan, X. Nano Lett. 2019, 19 (7), 4384. doi: 10.1021/acs.nanolett.9b00996  doi: 10.1021/acs.nanolett.9b00996

    31. [31]

      Liu, J.; Zheng, Y.; Hong, Z.; Cai, K.; Zhao, F.; Han, H. Sci. Adv. 2016, 2 (9), e1600858. doi: 10.1126/sciadv.1600858  doi: 10.1126/sciadv.1600858

    32. [32]

      Guo, X.; Qian, C.; Wan, X.; Zhang, W.; Zhu, H.; Zhang, J. Nanoscale 2020, 12 (7), 4374. doi: 10.1039/c9nr10785a  doi: 10.1039/c9nr10785a

    33. [33]

      Kalathil, S.; Katuri, K. P.; Alazmi, A. S.; Pedireddy, S.; Kornienko, N.; Costa, P. M. F. J.; Saikaly, P. E. Chem. Mater. 2019, 31 (10), 3686. doi: 10.1021/acs.chemmater.9b00394  doi: 10.1021/acs.chemmater.9b00394

    34. [34]

      Singh, P.; Kim, Y. J.; Zhang, D.; Yang, D. C. Trends Biotechnol. 2016, 34 (7), 588. doi: 10.1016/j.tibtech.2016.02.006  doi: 10.1016/j.tibtech.2016.02.006

    35. [35]

      Li, Q.; Lin, B.; Zhang, S.; Deng, C. J. Mater. Chem. A 2016, 4 (15), 5719. doi: 10.1039/C6TA01465H  doi: 10.1039/C6TA01465H

    36. [36]

      Li, J.; Wang, L.; Li, L.; Lv, C.; Zatovsky, I. V.; Han, W. ACS Appl. Mater. Inter. 2019, 11 (8), 8072. doi: 10.1021/acsami.8b21976  doi: 10.1021/acsami.8b21976

    37. [37]

      Li, G. X.; Yu, J. Y.; Jia, J.; Yang, L. J.; Zhao, L. L; Zhou, W. J.; Liu, H. Adv. Funct. Mater. 2018, 28, 1801332. doi: 10.1002/adfm.201801332  doi: 10.1002/adfm.201801332

    38. [38]

      Yu, J. Y.; Li, G. X.; Liu, H.; Zhao, L. L; Wang, A. Z.; Liu, Z.; Li, H. D.; Liu, H.; Hu, Y. Y.; Zhou, W. J. Adv. Funct. Mater. 2019, 29, 1901154. doi: 10.1002/adfm.201901154  doi: 10.1002/adfm.201901154

    39. [39]

      Li, G.; Wang, J.; Yu, J.; Liu, H.; Cao, Q.; Du, J.; Zhao, L.; Jia, J.; Liu, H.; Zhou, W. Appl. Catal. B-Environ. 2020, 261, 118147. doi: 10.1016/j.apcatb.2019.118147  doi: 10.1016/j.apcatb.2019.118147

    40. [40]

      Li, G.; Yu, J.; Yu, W.; Yang, L.; Zhang, X.; Liu, X.; Liu, H.; Zhou, W. Small 2020, 16, 2001980. doi: 10.1002/smll.202001980  doi: 10.1002/smll.202001980

    41. [41]

      Sharma, A.; Sharma, S.; Sharma, K.; Chetri, S. P. K.; Vashishtha, A.; Singh, P.; Kumar, R.; Rathi, B.; Agrawal, V. J. Appl. Phycol. 2016, 28 (3), 1759. doi: 10.1007/s10811-015-0715-1  doi: 10.1007/s10811-015-0715-1

    42. [42]

      MubarakAli, D.; Gopinath, V. Mater. Lett. 2012, 74, 8. doi: 10.1016/j.matlet.2012.01.026  doi: 10.1016/j.matlet.2012.01.026

    43. [43]

      Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B. Appl. Nanosci. 2014, 4 (5), 571. doi: 10.1007/s13204-013-0233-x  doi: 10.1007/s13204-013-0233-x

    44. [44]

      Li, D.; Chang, G.; Zong, L.; Xue, P.; Wang, Y.; Xia, Y.; Lai, C.; Yang, D. Energy Storage Mater. 2019, 17, 22. doi: 10.1016/j.ensm.2018.08.004  doi: 10.1016/j.ensm.2018.08.004

    45. [45]

      Chandrasekaran, S.; Sweetman, M. J.; Kant, K.; Skinner, W.; Losic, D.; Nann, T.; Voelcker, N. H. Chem. Commun. 2014, 50 (72), 10441. doi: 10.1039/C4CC04470C  doi: 10.1039/C4CC04470C

    46. [46]

      Cui, J.; Xi, Y.; Chen, S.; Li, D.; She, X.; Sun, J.; Han, W.; Yang, D.; Guo, S. Adv. Funct. Mater. 2016, 26 (46), 8487. doi: 10.1002/adfm.201603933  doi: 10.1002/adfm.201603933

    47. [47]

      Li, Y.; Liu, X.; Wang, J.; Li, Y; Chen, X.; Zhang, P. Catalysts 2019, 9, 730. doi: 10.3390/catal9090730  doi: 10.3390/catal9090730

    48. [48]

      Wen, A. M.; Steinmetz, N. F. Chem. Soc. Rev. 2016, 45 (15), 4074. doi: 10.1039/C5CS00287G  doi: 10.1039/C5CS00287G

    49. [49]

      Oh, D.; Qi, J.; Lu, Y. C.; Zhang, Y.; Shao-Horn, Y.; Belcher, A. M. Nat. Commun. 2013, 4 (1), 2756. doi: 10.1038/ncomms3756  doi: 10.1038/ncomms3756

    50. [50]

      Oh, D.; Qi, J.; Han, B.; Zhang, G.; Carney, T. J.; Ohmura, J.; Zhang, Y.; Shao-Horn, Y.; Belcher, A. M. Nano Lett. 2014, 14 (8), 4837. doi: 10.1021/nl502078m  doi: 10.1021/nl502078m

    51. [51]

      Records, W. C.; Yoon, Y.; Ohmura, J. F.; Chanut, N.; Belcher, A. M. Nano Energy 2019, 58, 167. doi: 10.1016/j.nanoen.2018.12.083  doi: 10.1016/j.nanoen.2018.12.083

    52. [52]

      Yang, C.; Choi, C. H.; Lee, C. S.; Yi, H. ACS Nano 2013, 7 (6), 5032. doi: 10.1021/nn4005582  doi: 10.1021/nn4005582

    53. [53]

      Aljabali, A. A. A.; Sainsbury, F.; Lomonossoff, G. P.; Evans, D. J. Small 2010, 6 (7), 818. doi: 10.1002/smll.200902135  doi: 10.1002/smll.200902135

    54. [54]

      Sicard, C.; Brayner, R.; Margueritat, J.; Hémadi, M.; Couté, A.; Yéprémian, C.; Djediat, C.; Aubard, J.; Fiévet, F.; Livage, J.; et al. J. Mater. Chem. 2010, 20 (42), 9342. doi: 10.1039/C0JM01735C  doi: 10.1039/C0JM01735C

    55. [55]

      Niu, S.; Cai, J.; Wang, G. Nano Res. 2021, 14 (6), 1985. doi: 10.1007/s12274-020-3249-z  doi: 10.1007/s12274-020-3249-z

    56. [56]

      Hua, W.; Sun, H. H.; Xu, F.; Wang, J. G. Rare Met. 2020, 39 (4), 335. doi: 10.1007/s12598-020-01384-7  doi: 10.1007/s12598-020-01384-7

    57. [57]

      Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S.; Shao, Z.; Lim, J. Chem. Soc. Rev. 2020, 49 (24), 9154. doi: 10.1039/D0CS00575D  doi: 10.1039/D0CS00575D

    58. [58]

      Shinozaki, K.; Zack, J. W.; Richards, R. M.; Pivovar, B. S. J. Electrochem. Soc. 2015, 162 (10), F1144. doi: 10.1149/2.1071509jes  doi: 10.1149/2.1071509jes

    59. [59]

      Wei, L.; Karahan, H. E.; Goh, K.; Jiang, W.; Yu, D.; Birer, Ö.; Jiang, R.; Chen, Y. J. Mater. Chem. A 2015, 3 (14), 7210. doi: 10.1039/C5TA00966A  doi: 10.1039/C5TA00966A

    60. [60]

      Zhang, T. Q.; Liu, J.; Huang, L. B.; Zhang, X. D.; Sun, Y. G.; Liu, X. C.; Bin, D. S.; Chen, X.; Cao, A. M.; Hu, J. S.; et al. J. Am. Chem. Soc. 2017, 139 (32), 11248. doi: 10.1021/jacs.7b06123  doi: 10.1021/jacs.7b06123

    61. [61]

      Pan, Y.; Mauzeroll, J. Joule 2020, 4 (4), 712. doi: 10.1016/j.joule.2020.03.015  doi: 10.1016/j.joule.2020.03.015

    62. [62]

      Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. ChemCatChem 2010, 2 (7), 724. doi: 10.1002/cctc.201000126  doi: 10.1002/cctc.201000126

    63. [63]

      Ma, X.; Zhang, X. Y.; Yang, M.; Xie, J. Y.; Lv, R. Q.; Chai, Y. M.; Dong, B. Rare Met. 2021, 40 (5), 1048. doi: 10.1007/s12598-020-01704-x  doi: 10.1007/s12598-020-01704-x

    64. [64]

      Yang, H.; Gong, L.; Wang, H.; Dong, C.; Wang, J.; Qi, K.; Liu, H.; Guo, X.; Xia, B. Y. Nat. Commun. 2020, 11 (1), 5075. doi: 10.1038/s41467-020-18891-x  doi: 10.1038/s41467-020-18891-x

    65. [65]

      Rho, J.; Lim, S. Y.; Hwang, I.; Yun, J.; Chung, T. D. ChemCatChem 2018, 10 (1), 165. doi: 10.1002/cctc.201701111  doi: 10.1002/cctc.201701111

    66. [66]

      Suh, W. k.; Ganesan, P.; Son, B.; Kim, H.; Shanmugam, S. Int. J. Hydrogen Energ. 2016, 41 (30), 12983. doi: 10.1016/j.ijhydene.2016.04.090  doi: 10.1016/j.ijhydene.2016.04.090

    67. [67]

      Gómez-Marín, A.; Feliu, J.; Edson, T. ACS Catal. 2018, 8 (9), 7931. doi: 10.1021/acscatal.8b01291  doi: 10.1021/acscatal.8b01291

    68. [68]

      Ding, R.; Liu, Y.; Rui, Z.; Li, J.; Liu, J.; Zou, Z. Nano Res. 2020, 13 (6), 1519. doi: 10.1007/s12274-020-2768-y  doi: 10.1007/s12274-020-2768-y

    69. [69]

      Wang, Y.; Wang, D.; Li, Y. SmartMat 2021, 2 (1), 56. doi: 10.1002/smm2.1023  doi: 10.1002/smm2.1023

    70. [70]

      Liu, X.; Liu, H.; Chen, C.; Zou, L.; Li, Y.; Zhang, Q.; Yang, B.; Zou, Z.; Yang, H. Nano Res. 2019, 12 (7), 1651. doi: 10.1007/s12274-019-2415-7  doi: 10.1007/s12274-019-2415-7

    71. [71]

      Chen, H.; Liang, X.; Liu, Y.; Ai, X.; Asefa, T.; Zou, X. Adv. Mater. 2020, 32 (44), 2002435. doi: 10.1002/adma.202002435  doi: 10.1002/adma.202002435

    72. [72]

      Ma, X.; Lei, Z.; Feng, W.; Ye, Y.; Feng, C. Carbon 2017, 123, 481. doi: 10.1016/j.carbon.2017.07.091  doi: 10.1016/j.carbon.2017.07.091

    73. [73]

      Ferrero, G. A.; Preuss, K.; Marinovic, A.; Jorge, A. B.; Mansor, N.; Brett, D. J. L.; Fuertes, A. B.; Sevilla, M.; Titirici, M. M. ACS Nano 2016, 10 (6), 5922. doi: 10.1021/acsnano.6b01247  doi: 10.1021/acsnano.6b01247

    74. [74]

      Ye, Y.; Duan, W.; Yi, X.; Lei, Z.; Li, G.; Feng, C. J. Power Sources 2019, 435, 226770. doi: 10.1016/j.jpowsour.2019.226770  doi: 10.1016/j.jpowsour.2019.226770

    75. [75]

      Stolarczyk, J. K.; Bhattacharyya, S.; Polavarapu, L.; Feldmann, J. ACS Catal. 2018, 8 (4), 3602. doi: 10.1021/acscatal.8b00791  doi: 10.1021/acscatal.8b00791

    76. [76]

      Corbin, N.; Zeng, J.; Williams, K.; Manthiram, K. Nano Res. 2019, 12 (9), 2093. doi: 10.1007/s12274-019-2403-y  doi: 10.1007/s12274-019-2403-y

    77. [77]

      Yang, C. H.; Nosheen, F.; Zhang, Z. C. Rare Met. 2021, 40 (6), 1412. doi: 10.1007/s12598-020-01600-4  doi: 10.1007/s12598-020-01600-4

    78. [78]

      Kuang, M.; Guan, A.; Gu, Z.; Han, P.; Qian, L.; Zheng, G. Nano Res. 2019, 12 (9), 2324. doi: 10.1007/s12274-019-2396-6  doi: 10.1007/s12274-019-2396-6

    79. [79]

      Chen, G. Z.; Chen, K. J.; Fu, J. W.; Liu, M. Rare Met. 2020, 39 (6), 607. doi: 10.1007/s12598-020-01416-2  doi: 10.1007/s12598-020-01416-2

    80. [80]

      Leitner, W. Angew. Chem. Int. Edit. 1995, 34 (20), 2207. doi: 10.1002/anie.199522071  doi: 10.1002/anie.199522071

    81. [81]

      Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Chem. Soc. Rev. 2009, 38 (1), 89. doi: 10.1039/B804323J  doi: 10.1039/B804323J

    82. [82]

      Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4 (11), 1700194. doi: 10.1002/advs.201700194  doi: 10.1002/advs.201700194

    83. [83]

      Song, Y. K.; Xie, W. F.; Shao, M. F. Acta Phys. -Chim. Sin. 2022, 38, 2101028.  doi: 10.3866/PKU.WHXB202101028

    84. [84]

      Hao, L. D.; Sun, Z. Y. Acta Phys. -Chim. Sin. 2021, 37 (7), 2009033.  doi: 10.3866/PKU.WHXB202009033

    85. [85]

      Li, L.; Zhang, C. W.; Chen, G. Y. J.; Zhu, B.; Chai, C.; Xu, Q. H.; Tan, E. K.; Zhu, Q.; Lim, K. L.; Yao, S. Q. Nat. Commun. 2014, 5 (1), 3276. doi: 10.1038/ncomms4276  doi: 10.1038/ncomms4276

    86. [86]

      Marques Mota, F.; Nguyen, D. L. T.; Lee, J. E.; Piao, H.; Choy, J. H.; Hwang, Y. J.; Kim, D. H. ACS Catal. 2018, 8 (5), 4364. doi: 10.1021/acscatal.8b00647  doi: 10.1021/acscatal.8b00647

    87. [87]

      Bosque, I.; Bach, T. ACS Catal. 2019, 9 (10), 9103. doi: 10.1021/acscatal.9b01039  doi: 10.1021/acscatal.9b01039

    88. [88]

      Rosen, J.; Hutchings, G. S.; Lu, Q.; Rivera, S.; Zhou, Y.; Vlachos, D. G.; Jiao, F. ACS Catal. 2015, 5 (7), 4293. doi: 10.1021/acscatal.5b00840  doi: 10.1021/acscatal.5b00840

    89. [89]

      Pan, Y.; Paschoalino, W. J.; Bayram, S. S.; Blum, A. S.; Mauzeroll, J. Nanoscale 2019, 11 (40), 18595. doi: 10.1039/C9NR04464G  doi: 10.1039/C9NR04464G

    90. [90]

      Ai, G.; Dai, Y.; Mao, W.; Zhao, H.; Fu, Y.; Song, X.; En, Y.; Battaglia, V. S.; Srinivasan, V.; Liu, G. Nano Lett. 2016, 16 (9), 5365. doi: 10.1021/acs.nanolett.6b01434  doi: 10.1021/acs.nanolett.6b01434

    91. [91]

      Wu, M.; Li, Y.; Liu, X.; Yang, S.; Ma, J.; Dou, S. SmartMat 2021, 2(1), 5. doi: 10.1002/smm2.1015  doi: 10.1002/smm2.1015

    92. [92]

      Xia, L.; Zhou, Y.; Ren, J.; Wu, H.; Lin, D.; Xie, F.; Jie, W.; Lam, K. H.; Xu, C.; Zheng, Q. Energ. Fuel. 2018, 32 (9), 9997. doi: 10.1021/acs.energyfuels.8b01453  doi: 10.1021/acs.energyfuels.8b01453

    93. [93]

      Su, Y. F.; Zhang, Q. Y.; Chen, L.; Bao, L. Y.; Lu, Y.; Chen, S.; Wu, F. Acta Phys. -Chim. Sin. 2021, 37(3), 2005062.  doi: 10.3866/PKU.WHXB202005062

    94. [94]

      Zhang, S. D.; Liu, Y.; Qi, M. Y.; Cao, A. M. Acta Phys. -Chim. Sin. 2021, 37 (11), 2011007.  doi: 10.3866/PKU.WHXB202011007

    95. [95]

      Hu, G.; Sun, Z.; Shi, C.; Fang, R.; Chen, J.; Hou, P.; Liu, C.; Cheng, H. M.; Li, F. Adv. Mater. 2017, 29 (11), 1603835. doi: 10.1002/adma.201603835  doi: 10.1002/adma.201603835

    96. [96]

      Hao, J. N.; Huang, Y. J.; He, C.; Xu, W. J.; Yuan, L. B.; Shu, D.; Song, X. N.; Meng, T. Sci. Rep. 2018, 8 (1), 562. doi: 10.1038/s41598-017-18895-6  doi: 10.1038/s41598-017-18895-6

    97. [97]

      Zhong, Y.; Xia, X.; Deng, S.; Xie, D.; Shen, S.; Zhang, K.; Guo, W.; Wang, X.; Tu, J. Adv. Mater. 2018, 30 (46), 1805165. doi: 10.1002/adma.201805165  doi: 10.1002/adma.201805165

    98. [98]

      Gao, S.; Fan, H.; Zhang, S. J. Mater. Chem. A 2014, 2 (43), 18263. doi: 10.1039/C4TA03558E  doi: 10.1039/C4TA03558E

    99. [99]

      Zhang, C.; Shen, L.; Shen, J.; Liu, F.; Chen, G.; Tao, R.; Ma, S.; Peng, Y.; Lu, Y. Adv. Mater. 2019, 31 (21), 1808338. doi: 10.1002/adma.201808338  doi: 10.1002/adma.201808338

    100. [100]

      Xie, Y.; Fang, L.; Cheng, H.; Hu, C.; Zhao, H.; Xu, J.; Fang, J.; Lu, X.; Zhang, J. J. Mater. Chem. A 2016, 4(40), 15612. doi: 10.1039/C6TA06164H  doi: 10.1039/C6TA06164H

    101. [101]

      Zhou, L.; Fu, P.; Wang, Y.; Sun, L.; Yuan, Y. J. Mater. Chem. A 2016, 4 (19), 7222. doi: 10.1039/C6TA01662F  doi: 10.1039/C6TA01662F

    102. [102]

      Shen, S.; Zhou, R.; Li, Y.; Liu, B.; Pan, G.; Liu, Q.; Xiong, Q.; Wang, X.; Xia, X.; Tu, J. Small Methods 2019, 3 (12), 1900596. doi: 10.1002/smtd.201900596  doi: 10.1002/smtd.201900596

    103. [103]

      Wang, X.; Ai, W.; Li, N.; Yu, T.; Chen, P. J. Mater. Chem. A 2015, 3(24), 12873. doi: 10.1039/C5TA01987G  doi: 10.1039/C5TA01987G

    104. [104]

      Wei, L.; Karahan, H. E.; Zhai, S.; Yuan, Y.; Qian, Q.; Goh, K.; Ng, A. K.; Chen, Y. J. Energy Chem. 2016, 25 (2), 191. doi: 10.1016/j.jechem.2015.12.001  doi: 10.1016/j.jechem.2015.12.001

  • 加载中
    1. [1]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    4. [4]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    6. [6]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    7. [7]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    10. [10]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    11. [11]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    12. [12]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    13. [13]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    18. [18]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    19. [19]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    20. [20]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(29)
  • Abstract views(1968)
  • HTML views(417)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return