Citation: Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2022, 38(6): 210600. doi: 10.3866/PKU.WHXB202106002 shu

NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries

  • Corresponding author: Shichun Mu, msc@whut.edu.cn
  • Received Date: 2 June 2021
    Revised Date: 6 August 2021
    Accepted Date: 9 August 2021
    Available Online: 19 August 2021

    Fund Project: the National Key Research and Development Program of China 2016YFA0202603the National Natural Science Foundation of China 22075223

  • Owing to their advantages such as safe operation, high power density, long cycle life, and low self-discharge rate, lithium-ion batteries (LIBs) have attracted attention for applications ranging from portable electronics to electric vehicles (EVs)/hybrid EVs (HEVs). However, the striking exothermic reaction and growth of lithium dendrites during lithiation-delithiation cycles for commercial graphite anodes are hidden safety risks associated with LIBs. Titanium dioxide (TiO2) is considered as an important material for LIBs because of its high safety and excellent cycling stability. In addition, TiO2 anode used in lithium-ion storage system has a relatively high voltage (~1.5 V vs. Li/Li+), and thus, it meets the strict safety standards of commercial LIBs. However, the unsatisfactory conductivity and ion diffusion rate prevent the further application of TiO2 in LIBs. To date, the combination of graphene, carbon nanotubes (CNTs), carbon quantum dots (QDs) and porous carbon with TiO2 has attracted significant research attention. Nevertheless, it is still challenging to introduce a unique nanostructure design by organically compounding TiO2 with N-doped porous carbon matrix. Herein, N-doped porous carbon incorporating fine TiO2 nanoparticles (NPs) with a flower-like structure (denoted as FL-TiO2/NPC) is successfully prepared using flower-like NH2-MIL-125(Ti) as the hard template. The as-prepared Ti-based framework shows a flower-like structure, which is assembled with two-dimensional (2D) corrugated porous nanosheets. On the one hand, the corrugated carbon nanosheets incorporating fine TiO2 particles can offer a magnifying contact area between electrode matrix and electrolyte. On the other hand, the N-doped porous carbon plays a crucial role in improving the conductivity and structural integrity of the whole matrix. Therefore, the as-prepared FL-TiO2/NPC can deliver an excellent reversible lithium storage capacity of 384.2 mAh·g-1 at the current density of 0.5 A·g-1 after 300 cycles and 279.1 mAh·g-1 at 1 A·g-1 after 500 cycles. Furthermore, even when tested at 2 A·g-1, FL-TiO2/NPC can deliver a reversible capacity of 256.5 mAh·g-1 with a coulombic efficiency of 100% after 2000 cycles. The superior electrochemical performance and the structural toughness of LIBs originate from the unique flower-like structure. We believe that the proposed synthesis strategy will provide a new idea for the preparation of metal oxides/N-doped porous carbon composites with high lithium storage performance.
  • 加载中
    1. [1]

      Tarascon, J. M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    2. [2]

      Whittingham, M. S. Chem. Rev. 2004, 104 (10), 4271. doi: 10.1021/cr020731c  doi: 10.1021/cr020731c

    3. [3]

      Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc. 2013, 135 (4), 1167. doi: 10.1021/ja3091438  doi: 10.1021/ja3091438

    4. [4]

      Zhang, J.; He, T.; Zhang, W.; Sheng, J. Z.; Amiinu, I. S.; Kou, Z. K.; Yang, J. L.; Mai, L. Q.; Mu, S. C. Adv. Energy Mater. 2017, 7 (5), 1602092. doi: 10.1002/aenm.201602092  doi: 10.1002/aenm.201602092

    5. [5]

      Yang, J.; Kang, X.; He, D.; Zheng, A.; Pan, M.; Mu, S. J. Mater. Chem. A 2015, 3 (32), 16567. doi: 10.1039/c5ta03874j  doi: 10.1039/c5ta03874j

    6. [6]

      Liu, H.; Zeng, W.; Yang, Y.; Chen, J.; Mu, S. J. Mater. Chem. A 2020, 9 (2), 1260. doi: 10.1039/d0ta10179f  doi: 10.1039/d0ta10179f

    7. [7]

      Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Nano Lett. 2008, 8 (8), 2277. doi: 10.1021/nl800957b  doi: 10.1021/nl800957b

    8. [8]

      Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Chem. Rev. 2013, 113 (7), 5364. doi: 10.1021/cr3001884  doi: 10.1021/cr3001884

    9. [9]

      Zhu, G. N.; Wang, Y. G.; Xia, Y. Y. Energy Environ. Sci. 2012, 5 (5), 6652. doi: 10.1039/c2ee03410g  doi: 10.1039/c2ee03410g

    10. [10]

      Kim, K. T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y. K.; Lu, J.; Amine, K.; Myung, S. T. Nano Lett. 2014, 14 (2), 416. doi: 10.1021/nl402747x  doi: 10.1021/nl402747x

    11. [11]

      Wang, Z. Y.; Lou, X. W. Adv. Mater. 2012, 24 (30), 4124. doi: 10.1002/adma.201104546  doi: 10.1002/adma.201104546

    12. [12]

      Wu, L. M.; Buchholz, D.; Bresser, D.; Chagas, L.G.; Passerini, S. J. Power Sources 2014, 251, 379. doi: 10.1016/j.jpowsour.2013.11.083  doi: 10.1016/j.jpowsour.2013.11.083

    13. [13]

      Wang, D. H.; Choi, D. W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G.; et al. Acs Nano 2009, 3 (4), 907. doi: 10.1021/nn900150y  doi: 10.1021/nn900150y

    14. [14]

      Wang, Z. Y.; Zhou, L.; Lou, X. W. Adv. Mater. 2012, 24 (14), 1903. doi: 10.1002/adma.201200469  doi: 10.1002/adma.201200469

    15. [15]

      Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D. Y.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. J. Am. Chem. Soc. 2010, 132 (17), 6124. doi: 10.1021/ja100102y  doi: 10.1021/ja100102y

    16. [16]

      Chen, D. H.; Huang, F. Z.; Cheng, Y. B.; Caruso, R. A. Adv. Mater. 2009, 21 (21), 2206. doi: 10.1002/adma.200802603  doi: 10.1002/adma.200802603

    17. [17]

      Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J. Adv. Mater. 2006, 18 (11), 1421. doi: 10.1002/adma.200502723  doi: 10.1002/adma.200502723

    18. [18]

      Armstrong, A. R.; Armstrong, G.; Canales, J.; Garcia, R.; Bruce, P. G. Adv. Mater. 2005, 17 (7), 862. doi: 10.1002/adma.200400795  doi: 10.1002/adma.200400795

    19. [19]

      Qiu, B. C.; Xing, M. Y.; Zhang, J. L. J. Am. Chem. Soc. 2014, 136 (16), 5852. doi: 10.1021/ja500873u  doi: 10.1021/ja500873u

    20. [20]

      Liu, L. C.; Corma, A. Chem. Rev. 2018, 118 (10), 4981. doi: 10.1021/acs.chemrev.7b00776  doi: 10.1021/acs.chemrev.7b00776

    21. [21]

      Chen, D.; Lu, R.; Pu, Z.; Zhu, J.; Li, H. W.; Liu, F.; Hu, S.; Luo, X.; Wu, J.; Zhao, Y.; et al. Appl. Catal. B-Environ. 2020, 279 (15), 119396. doi: 10.1016/j.apcatb.2020.119396  doi: 10.1016/j.apcatb.2020.119396

    22. [22]

      Yuan, S.; Pu, Z. H.; Zhou, H.; Yu, J.; Amiinu, I. S.; Zhu, J. W.; Liang, Q. R.; Yang, J. L.; He, D. P.; Hu, Z. Y.; et al. Nano Energy 2019, 59, 472. doi: 10.1016/j.nanoen.2019.02.062  doi: 10.1016/j.nanoen.2019.02.062

    23. [23]

      Li, H.; Wang, K. C.; Sun, Y. J.; Lollar, C. T.; Li, J. L.; Zhou, H. C. Mater. Today 2018, 21 (2), 108. doi: 10.1016/j.mattod.2017.07.006  doi: 10.1016/j.mattod.2017.07.006

    24. [24]

      Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Angew. Chem. Int. Ed. 2016, 55 (18), 5414. doi: 10.1002/anie.201505581  doi: 10.1002/anie.201505581

    25. [25]

      Xu, X.; Cao, R.; Jeong, S.; Cho, J. Nano Lett. 2012, 12 (9), 4988. doi: 10.1021/nl302618s  doi: 10.1021/nl302618s

    26. [26]

      Zou, F.; Hu, X. L.; Li, Z.; Qie, L.; Hu, C. C.; Zeng, R.; Jiang, Y.; Huang, Y. H. Adv. Mater. 2014, 26 (38), 6622. doi: 10.1002/adma.201402322  doi: 10.1002/adma.201402322

    27. [27]

      Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. Adv. Mater. 2015, 27 (14), 2400. doi: 10.1002/adma.201405222  doi: 10.1002/adma.201405222

    28. [28]

      Wu, R. B.; Qian, X. K.; Yu, F.; Liu, H.; Zhou, K.; Wei, J.; Huang, Y. Z. J. Mater. Chem. A 2013, 1 (37), 11126. doi: 10.1039/c3ta12621h  doi: 10.1039/c3ta12621h

    29. [29]

      Wang, Q. F.; Zou, R. Q.; Xia, W.; Ma, J. Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y. Y. C.; Xia, D. G.; Xu, Q. Small 2015, 11 (21), 2511. doi: 10.1002/smll.201403579  doi: 10.1002/smll.201403579

    30. [30]

      Liu, J.; Wu, C.; Xiao, D. D.; Kopold, P.; Gu, L.; van Aken, P. A.; Maier, J.; Yu, Y. Small 2016, 12 (17), 2354. doi: 10.1002/smll.201503821  doi: 10.1002/smll.201503821

    31. [31]

      Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H. Angew. Chem. Int. Ed. 2014, 53 (5), 1404. doi: 10.1002/anie.201308013  doi: 10.1002/anie.201308013

    32. [32]

      Li, C.; Chen, T. Q.; Xu, W. J.; Lou, X. B.; Pan, L. K.; Chen, Q.; Hu, B. W. J. Mater. Chem. A 2015, 3 (10), 5585. doi: 10.1039/c4ta06914e  doi: 10.1039/c4ta06914e

    33. [33]

      Li, Z. Q.; Yin, L. W. Energy Storage Mater. 2018, 14, 367. doi: 10.1016/j.ensm.2018.06.002  doi: 10.1016/j.ensm.2018.06.002

    34. [34]

      Li, H.; Liang, M.; Sun, W. W.; Wang, Y. Adv. Funct. Mater. 2016, 26 (7), 1098. doi: 10.1002/adfm.201504312  doi: 10.1002/adfm.201504312

    35. [35]

      Fan, S.; Huang, S. Z.; Chen, Y. X.; Shang, Y.; Wang, Y.; Kong, D. Z.; Pam, M. E.; Shi, L. L.; Lim, Y. W.; Shi, Y. M.; et al. Energy Storage Mater. 2019, 23, 17. doi: 10.1016/j.ensm.2019.05.043  doi: 10.1016/j.ensm.2019.05.043

    36. [36]

      Ji, D.; Zhou, H.; Tong, Y. L.; Wang, J. P.; Zhu, M. Z.; Chen, T. H.; Yuan, A. H. Chem. Eng. J. 2017, 313, 1623. doi: 10.1016/j.cej.2016.11.063  doi: 10.1016/j.cej.2016.11.063

    37. [37]

      Li, C.; Liu, L.; Kang, J.; Xiao, Y.; Feng, Y.; Cao, F. F.; Zhang, H. Energy Storage Mater. 2020, 31, 115. doi: 10.1016/j.ensm.2020.06.005  doi: 10.1016/j.ensm.2020.06.005

    38. [38]

      A. Banerjee, V. Aravindan, S. Bhatnagar, D. Mhamane, S. Madhavi, S. Ogale, Nano Energy 2013, 2 (5), 890. doi: 10.1016/j.nanoen.2013.03.006  doi: 10.1016/j.nanoen.2013.03.006

    39. [39]

      Wu, F.; Srot, V.; Chen, S.; Zhang, M.; van Aken, P. A.; Wang, Y. Maier, J.; Yu, Y. ACS Nano 2021, 15 (1), 1509. doi: 10.1021/acsnano.0c08918  doi: 10.1021/acsnano.0c08918

    40. [40]

      Zhou, X. F.; Chen, L. L.; Zhang, W. H.; Wang, J. W.; Liu, Z. J.; Zeng, S. F.; Xu, R.; Wu, Y.; Ye, S.F.; Feng, Y. Z.; et al. Nano Lett. 2019, 19 (8), 4965. doi: 10.1021/acs.nanolett.9b01127  doi: 10.1021/acs.nanolett.9b01127

    41. [41]

      Wu, Y.; Liu, Z.; Zhong, X. W.; Cheng, X. L.; Fan, Z. J.; Yu, Y. Small 2018, 14 (12), 1703472. doi: 10.1002/smll.201703472  doi: 10.1002/smll.201703472

    42. [42]

      Wang, P.; Zhang, G.; Cheng, J.; You, Y.; Li, Y. K.; Ding, C.; Gu, J. J.; Zheng, X. S.; Zhang, C. F.; Cao, F. F. ACS Appl. Mater. Interfaces 2017, 9, 7, 6138. doi: 10.1021/acsami.6b15982  doi: 10.1021/acsami.6b15982

    43. [43]

      Xu, B. Y.; Zhang, Y.; Pi, Y. C.; Shao, Q.; Huang, X. Q. Acta Phys. -Chim. Sin. 2021, 37 (7), 2009074.  doi: 10.3866/PKU.WHXB202009074

    44. [44]

      Fang, Y. J.; Zhang, J. X.; Zhong, F. P.; Feng, X. M.; Chen, W. H.; Ai, X. P.; Yang, H. X.; Cao, Y. L. CCS Chem. 2020, 2, 2428. doi: 10.31635/ccschem.020.202000520  doi: 10.31635/ccschem.020.202000520

    45. [45]

      Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Acta Phys. -Chim. Sin. 2021, 37 (7), 2010025.  doi: 10.3866/PKU.WHXB202010025

    46. [46]

      Yang, Y.; Zhu, J. W.; Wang, P. Y.; Zeng, W. H.; Liu, H. M.; Zhang, C. T.; Chen, Z. X.; Liu, D.; Xiao, J. S.; Mu. S. C. J. Alloy. Compd. 2021, 876 (25), 160135. doi: 10.1016/j.jallcom.2021.160135  doi: 10.1016/j.jallcom.2021.160135

    47. [47]

      Fan, M.; Yang, Z.; Lin, Z.; Xiong, X. Nanoscale 2021, 13, 2368. doi: 10.1039/d0nr07659g  doi: 10.1039/d0nr07659g

    48. [48]

      Wang, F.; He, X. X.; Sun, L. M.; Chen, J. Q.; Wang, X. J.; Xu, J. H.; Han, X. G. J. Mater. Chem. A 2018, 6 (5), 2091. doi: 10.1039/c7ta09166d  doi: 10.1039/c7ta09166d

    49. [49]

      Xing, Y. L.; Wang, S. B.; Fang, B. Z.; Song, G.; Wilkinson, D. P.; Zhang, S. C. J. Power Sources 2018, 385, 10. doi: 10.1016/j.jpowsour.2018.02.077  doi: 10.1016/j.jpowsour.2018.02.077

    50. [50]

      Ren, M. M.; Xu, H.; Li, F.; Liu, W. L.; Gao, C. L.; Su, L. W.; Li, G. D. Hei, J. P. J. Power Sources 2017, 353, 237. doi: 10.1016/j.jpowsour.2017.04.015  doi: 10.1016/j.jpowsour.2017.04.015

    51. [51]

      Xu, H.; Wang, W.; Qin, L.; Yu, G.; Ren, L.; Jiang, Y.; Chen, J. ACS Appl. Mater. Interfaces 2020, 12 (39), 43813. doi: 10.1021/acsami.0c13142  doi: 10.1021/acsami.0c13142

  • 加载中
    1. [1]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    2. [2]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    3. [3]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    4. [4]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    5. [5]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    6. [6]

      Ming ZhongXue GuoYang LiuKun ZhaoHui PengSuijun LiuXiaobo Zhang . Molybdenum-glycerate@zeolitic imidazolate framework spheres derived hierarchical nitrogen-doped carbon-encapsulated bimetallic selenides heterostructures for improved lithium-ion storage. Chinese Chemical Letters, 2025, 36(5): 109873-. doi: 10.1016/j.cclet.2024.109873

    7. [7]

      Zhanheng YanWeiqing SuWeiwei XuQianhui MaoLisha XueHuanxin LiWuhua LiuXiu LiQiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217

    8. [8]

      Xiangkang JiangZhixing WangHong DongXiang ZhangJin HuManman ChuYanshuai HongLei XuWenjie PengXiqian YuJiexi Wang . An in-depth understanding of Al doping homogeneity affecting the performance of LiCoO2 at cut-off voltage over 4.6 V. Chinese Chemical Letters, 2024, 35(12): 109553-. doi: 10.1016/j.cclet.2024.109553

    9. [9]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    10. [10]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    11. [11]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    12. [12]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    13. [13]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    14. [14]

      Bing JiangGang ZouBi LuoYan GuoJingru LiWendi ZhangQianxiao FanLehao LiuLihua ChuQiaobao ZhangMeicheng Li . Enhanced electrochemical performance of lithium-rich layered oxide materials: Exploring advanced coating strategies. Chinese Chemical Letters, 2025, 36(4): 109801-. doi: 10.1016/j.cclet.2024.109801

    15. [15]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    16. [16]

      Yixin LuMinghan QinShixian ZhangZhen LiuWang SunZhenhua WangJinshuo QiaoKening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567

    17. [17]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    18. [18]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    19. [19]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    20. [20]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

Metrics
  • PDF Downloads(26)
  • Abstract views(1630)
  • HTML views(339)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return