Citation: Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction[J]. Acta Physico-Chimica Sinica, ;2022, 38(6): 210102. doi: 10.3866/PKU.WHXB202101028 shu

Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction

  • Corresponding author: Wenfu Xie, wenfu2010qd@126.com Mingfei Shao, shaomf@mail.buct.edu.cn
  • Received Date: 15 January 2021
    Revised Date: 15 February 2021
    Accepted Date: 22 February 2021
    Available Online: 1 March 2021

    Fund Project: the National Natural Science Foundation of China 21922501the National Natural Science Foundation of China 22090031the National Natural Science Foundation of China 21871021the Beijing Natural Science Foundation 2192040the Fundamental Research Funds for the Central Universities XK1802-6the Fundamental Research Funds for the Central Universities XK1803-05

  • The electrocatalytic carbon dioxide reduction reaction (E-CO2RR) has attracted attention in recent years for its ability to effectively alleviate the environmental problems caused by the rapid increase of CO2 in the atmosphere and transform CO2 into high value-added fuels or chemicals (e.g., CO, HCOOH, CH4, CH3OH, C2H4, C2H5OH, etc.) under mild conditions. In addition, clean energy sources, such as solar and wind energy, can provide electrical energy for the electrochemical CO2 conversion technology used in large-scale industrial applications. One limitation of the E-CO2RR is that CO2 is a thermodynamically stable linear molecule with a slow kinetic reaction rate. In addition, the E-CO2RR involves complex processes, such as gas diffusion and multi-electron transfer, making its selectivity problematic. Therefore, constructing highly efficient and stable catalytic electrodes has become a core research topic in the field of E-CO2RR. Unfortunately, the traditional method of coating electrodes with binders (e.g., Nafion, polyvinylidene fluoride, and polytetrafluoroethylene) usually results in a low utilization ratio of active sites due to the easy aggregation of the catalysts themselves. This could result in the severe embedding of active sites and limited mass transfer. Moreover, the dissolution of the catalyst layer during the electrocatalytic process also reduces the activity and stability of the electrodes, making it difficult to reuse. Therefore, it is necessary to regulate the electrode reaction interface to improve the utilization ratio of active sites. The integrated electrodes, where the catalyst is grown directly on the current collector, can avoid the use of binders to facilitate the exposure of active sites and transfer of electrons. The integrated structure can also enhance the bonding strength between the active material and current collector and improve the cycling stability of the electrodes. Meanwhile, the micro-environment (e.g., pH, concentration of CO2, and intermediates) at the three-phase interface can be effectively controlled on the integrated electrodes, which can enhance the performance of the E-CO2RR. In recent years, encouraging progress has been achieved in the study of the E-CO2RR. However, current reviews of the E-CO2RR mainly focus on the regulation of the intrinsic activity of catalysts; discussions and reviews from the perspective of the electrodes are rarely reported. This article reviews the latest research of the integrated electrodes for the E-CO2RR with a focus on the application of different types of integrated electrodes (e.g., metal, alloy, metal oxide, metal sulfide/phosphide, and metal single atom). It also analyzes the effects of morphology, surface, and interface regulation on the electrocatalytic performance of the E-CO2RR. Finally, it highlights the challenges that still exist in this field and discusses the future development of the integrated electrodes.
  • 加载中
    1. [1]

      Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M. D.; Seneviratne, S. I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D. C.; et al. Nature 2013, 500, 287. doi: 10.1038/nature12350  doi: 10.1038/nature12350

    2. [2]

      Rogelj, J.; Luderer, G.; Pietzcker, R. C.; Kriegler, E.; Schaeffer, M.; Krey, V.; Riahi, K. Nat. Clim. Change 2015, 5, 519. doi: 10.1038/nclimate2572  doi: 10.1038/nclimate2572

    3. [3]

      Mac Dowell, N.; Fennell, P. S.; Shah, N.; Maitland, G. C. Nat. Clim. Change 2017, 7, 243. doi: 10.1038/nclimate3231  doi: 10.1038/nclimate3231

    4. [4]

      Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423. doi: 10.1002/adma.201504766  doi: 10.1002/adma.201504766

    5. [5]

      Sreekanth, N.; Nazrulla, M. A.; Vineesh, T. V.; Sailaja, K.; Phani, K. L. Chem. Commun. 2015, 51, 16061. doi: 10.1039/C5CC06051F  doi: 10.1039/C5CC06051F

    6. [6]

      Liu, J.; Guo, C.; Vasileff, A.; Qiao, S. Small Methods 2017, 1, 1600006. doi: 10.1002/smtd.201600006  doi: 10.1002/smtd.201600006

    7. [7]

      Wu, J. H.; Huang, Y.; Ye, W.; Li, Y. G. Adv. Sci. 2017, 4, 1700194. doi: 10.1002/advs.201700194  doi: 10.1002/advs.201700194

    8. [8]

      Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; et al. Chem. Rev. 2013, 113, 6621. doi: 10.1021/cr300463y  doi: 10.1021/cr300463y

    9. [9]

      Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C. P. Annu. Rev. Phy. Chem. 2012, 63, 541. doi: 10.1146/annurev-physchem-032511-143759  doi: 10.1146/annurev-physchem-032511-143759

    10. [10]

      Furler, P.; Scheffe, J.; Gorbar, M.; Moes, L.; Vogt, U.; Steinfeld, A. Energy Fuels 2012, 26, 7051. doi: 10.1021/ef3013757  doi: 10.1021/ef3013757

    11. [11]

      Nielsen, D. U.; Hu, X. M.; Daasbjerg, K.; Skrydstrup, T. Nat. Catal. 2018, 1, 244. doi: 10.1038/s41929-018-0051-3  doi: 10.1038/s41929-018-0051-3

    12. [12]

      Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A  doi: 10.1039/C1CS15008A

    13. [13]

      Li, F.; Zhao, S. F.; Chen, L.; Khan, A.; MacFarlane, D. R.; Zhang, J. Energy Environ. Sci. 2016, 9, 216. doi: 10.1039/C5EE02879E  doi: 10.1039/C5EE02879E

    14. [14]

      Hong, X.; Chan, K.; Tsai, C.; Nørskov, J. K. ACS Catal. 2016, 6, 4428. doi: 10.1021/acscatal.6b00619  doi: 10.1021/acscatal.6b00619

    15. [15]

      Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Chem. Rev. 2018, 118, 6337. doi: 10.1021/acs.chemrev.7b00689  doi: 10.1021/acs.chemrev.7b00689

    16. [16]

      Wang, Y.; Han, P.; Lv, X.; Zhang, L.; Zheng, G. Joule 2018, 2, 2551. doi: 10.1016/j.joule.2018.09.021  doi: 10.1016/j.joule.2018.09.021

    17. [17]

      Wang, W.; Shang, L.; Chang, G.; Yan, C.; Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Yang, D.; Zhang, T. Adv. Mater. 2019, 31, 1808276. doi: 10.1002/adma.201808276  doi: 10.1002/adma.201808276

    18. [18]

      Liu, S.; Yang, H.; Su, X.; Ding, J.; Mao, Q.; Huang, Y.; Zhang, T.; Liu, B. J. Energy Chem. 2019, 36, 95. doi: 10.1016/j.jechem.2019.06.013  doi: 10.1016/j.jechem.2019.06.013

    19. [19]

      Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H. ; et al. Nat. Chem. 2018, 10, 974. doi: 10.1038/s41557-018-0092-x  doi: 10.1038/s41557-018-0092-x

    20. [20]

      Pan, F.; Li, B.; Sarnello, E.; Hwang, S.; Gang, Y.; Feng, X.; Xiang, X.; Adli, N. M.; Li, T.; Su, D.; et al. Nano Energy 2020, 68, 104384. doi: 10.1016/j.nanoen.2019.104384  doi: 10.1016/j.nanoen.2019.104384

    21. [21]

      Pan, F.; Duan, Y.; Liang, A.; Zhang, J.; Li, Y. Electrochim. Acta 2017, 238, 375. doi: 10.1016/j.electacta.2017.04.044  doi: 10.1016/j.electacta.2017.04.044

    22. [22]

      Hoang, T. T. H.; Verma, S.; Ma, S.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A. J. Am. Chem. Soc. 2018, 140, 5791. doi: 10.1021/jacs.8b01868  doi: 10.1021/jacs.8b01868

    23. [23]

      Wen, G.; Lee, D. U.; Ren, B.; Hassan, F. M.; Jiang, G.; Cano, Z. P.; Gostick, J.; Croiset, E.; Bai, Z.; Yang, L.; et al. Adv. Energy Mater. 2018, 8, 1802427. doi: 10.1002/aenm.201802427  doi: 10.1002/aenm.201802427

    24. [24]

      Cheng, T.; Wang, L.; Merinov, B. V.; Goddard, W. A. J. Am. Chem. Soc. 2018, 140, 7787. doi: 10.1021/jacs.8b04006  doi: 10.1021/jacs.8b04006

    25. [25]

      Li, L.; Ma, D. K.; Qi, F.; Chen, W.; Huang, S. Electrochim. Acta 2019, 298, 580. doi: 10.1016/j.electacta.2018.12.116  doi: 10.1016/j.electacta.2018.12.116

    26. [26]

      Liu, S.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. D. Angew. Chem. Int. Ed. 2019, 58, 8499. doi: 10.1002/anie.201903613  doi: 10.1002/anie.201903613

    27. [27]

      Liang, C.; Kim, B.; Yang, S.; Yang, L.; Francisco Woellner, C.; Li, Z.; Vajtai, R.; Yang, W.; Wu, J.; Kenis, P. J. A.; et al. J. Mater. Chem. A 2018, 6, 10313. doi: 10.1039/C8TA01367E  doi: 10.1039/C8TA01367E

    28. [28]

      Zheng, X.; Ji, Y.; Tang, J.; Wang, J.; Liu, B.; Steinrück, H. G.; Lim, K.; Li, Y.; Toney, M. F.; Chan, K.; et al. Nat. Catal. 2019, 2, 55. doi: 10.1038/s41929-018-0200-8  doi: 10.1038/s41929-018-0200-8

    29. [29]

      Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Chem. Rev. 2019, 119, 7610. doi: 10.1021/acs.chemrev.8b00705  doi: 10.1021/acs.chemrev.8b00705

    30. [30]

      Zhao, Y.; Tan, X.; Yang, W.; Jia, C.; Chen, X.; Ren, W.; Smith, S. C.; Zhao, C. Angew. Chem. Int. Ed. 2020, 59, 21493. doi: 10.1002/anie.202009616  doi: 10.1002/anie.202009616

    31. [31]

      Michael B. Ross; Yang, P.; Phil De Luna; Yi, F. L.; Cao Thang Dinh; Dohyung Kim; Sargent, E. H. Nat. Catal. 2019, 2, 648. doi: 10.1038/s41929-019-0306-7  doi: 10.1038/s41929-019-0306-7

    32. [32]

      Liu, X.; Xiao, J.; Peng, H.; Hong, X.; Chan, K.; Nørskov, J. K. Nat. Commun. 2017, 8, 15438. doi: 10.1038/ncomms15438  doi: 10.1038/ncomms15438

    33. [33]

      Pan, F.; Yang, Y. Energy Environ. Sci. 2020, 13, 2275. doi: 10.1039/d0ee00900h  doi: 10.1039/d0ee00900h

    34. [34]

      Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Adv. Mater. 2020, 32, 1806326. doi: 10.1002/adma.201806326  doi: 10.1002/adma.201806326

    35. [35]

      Liu, J.; Zhu, D.; Zheng, Y.; Vasileff, A.; Qiao, S. ACS Catal. 2018, 8, 6707. doi: 10.1021/acscatal.8b01715  doi: 10.1021/acscatal.8b01715

    36. [36]

      Yang, H.; Wang, X.; Hu, Q.; Chai, X.; Ren, X.; Zhang, Q.; Liu, J.; He, C. Small Methods 2020, 4, 1900826. doi: 10.1002/smtd.201900826  doi: 10.1002/smtd.201900826

    37. [37]

      Tang, C.; Wang, H. F.; Zhang, Q. Acc. Chem. Res. 2018, 51, 881. doi: 10.1021/acs.accounts.7b00616  doi: 10.1021/acs.accounts.7b00616

    38. [38]

      Ji, D. X.; Fan, L.; Li, L. L.; Peng, S. J.; Yu, D. S.; Song, J. N.; Ramakrishna, S.; Guo, S. J. Adv. Mater. 2019, 31, 1808267. doi: 10.1002/adma.201808267  doi: 10.1002/adma.201808267

    39. [39]

      Wang, P.; Jia, T.; Wang, B. J. Power Sources 2020, 474, 228621. doi: 10.1016/j.jpowsour.2020.228621  doi: 10.1016/j.jpowsour.2020.228621

    40. [40]

      Luo, W.; Zhang, Q.; Zhang, J.; Moioli, E.; Zhao, K.; Züttel, A. Appl. Catal. B: Environ. 2020, 273, 119060. doi: 10.1016/j.apcatb.2020.119060  doi: 10.1016/j.apcatb.2020.119060

    41. [41]

      Zhang, T.; Han, X.; Yang, H.; Han, A.; Hu, E.; Li, Y.; Yang, X. Q.; Wang, L.; Liu, J.; Liu, B. Angew. Chem. Int. Ed. 2020, 59, 2. doi: 10.1002/anie.202002984  doi: 10.1002/anie.202002984

    42. [42]

      Zhong, H.; Qiu, Y.; Zhang, T.; Li, X.; Zhang, H.; Chen, X. J. Mater. Chem. A 2016, 4, 13746. doi: 10.1039/c6ta06202d  doi: 10.1039/c6ta06202d

    43. [43]

      Zhou, L.; Shao, M. F.; Li, J. B.; Jiang, S.; Wei, M.; Duan, X. Nano Energy 2017, 41, 583. doi: 10.1016/j.nanoen.2017.10.009  doi: 10.1016/j.nanoen.2017.10.009

    44. [44]

      Xu, K.; Wang, F.; Wang, Z.; Zhan, X.; Wang, Q.; Cheng, Z.; Safdar, M.; He, J. ACS Nano 2014, 8, 8468. doi: 10.1021/nn503027k  doi: 10.1021/nn503027k

    45. [45]

      Li, Z. H.; Shao, M. F.; Yang, Q. H.; Tang, Y.; Wei, M.; Evans, D. G.; Duan, X. Nano Energy 2017, 37, 98. doi: 10.1016/j.nanoen.2017.05.016  doi: 10.1016/j.nanoen.2017.05.016

    46. [46]

      Han, Z.; Hu, Q.; Cheng, Z.; Li, G.; Huang, X.; Wang, Z.; Yang, H.; Ren, X.; Zhang, Q.; Liu, J.; et al. Adv. Funct. Mater. 2020, 30, 2000154. doi: 10.1002/adfm.202000154  doi: 10.1002/adfm.202000154

    47. [47]

      Su, X.; Sun, Y.; Jin, L.; Zhang, L.; Yang, Y.; Kerns, P.; Liu, B.; Li, S.; He, J. Appl. Catal. B: Environ. 2020, 269, 118800. doi: 10.1016/j.apcatb.2020.118800  doi: 10.1016/j.apcatb.2020.118800

    48. [48]

      An, X.; Li, S.; Yoshida, A.; Yu, T.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. ACS Appl. Mater. Interfaces 2019, 11, 42114. doi: 10.1021/acsami.9b13270  doi: 10.1021/acsami.9b13270

    49. [49]

      Rosen, J.; Hutchings, G. S.; Lu, Q.; Forest, R. V.; Moore, A.; Jiao, F. ACS Catal. 2015, 5, 4586. doi: 10.1021/acscatal.5b00922  doi: 10.1021/acscatal.5b00922

    50. [50]

      Wanninayake, N.; Ai, Q.; Zhou, R.; Hoque, M. A.; Herrell, S.; Guzman, M. I.; Risko, C.; Kim, D. Y. Carbon 2020, 157, 408. doi: 10.1016/j.carbon.2019.10.022  doi: 10.1016/j.carbon.2019.10.022

    51. [51]

      Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Chem. Lett. 1986, 15, 897. doi: 10.1246/cl.1986.897  doi: 10.1246/cl.1986.897

    52. [52]

      Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833. doi: 10.1016/0013-4686(94)85172-7  doi: 10.1016/0013-4686(94)85172-7

    53. [53]

      Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc., Faraday Trans. 1 1989, 85, 2309. doi: 10.1039/F19898502309  doi: 10.1039/F19898502309

    54. [54]

      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5, 7050. doi: 10.1039/C2EE21234J  doi: 10.1039/C2EE21234J

    55. [55]

      Bai, X. F.; Wei, C.; Wang, B. Y.; Feng, G. H.; WeI, W.; Jiao, Z.; Sun, Y. H. Acta Phys. -Chim. Sin. 2017, 33, 2388.  doi: 10.3866/PKU.WHXB201706131

    56. [56]

      Zhou, Y.; Han, N.; Li, Y. G. Acta Phys. -Chim. Sin. 2020, 36, 2001041.  doi: 10.3866/PKU.WHXB202001041

    57. [57]

      Zou, J.; Iqbal, M.; Vijayakumar, A.; Wang, C.; Macfarlane, D. R.; Yamauchi, Y.; Lee, C. Y.; Wallace, G. G. J. Mater. Chem. A 2020, 8, 8041. doi: 10.1039/d0ta02077j  doi: 10.1039/d0ta02077j

    58. [58]

      Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Nat. Mater. 2006, 5, 909. doi: 10.1038/nmat1752  doi: 10.1038/nmat1752

    59. [59]

      Yang, H.; Han, N.; Deng, J.; Wu, J.; Wang, Y.; Hu, Y.; Ding, P.; Li, Y.; Li, Y.; Lu, J. Adv. Energy Mater. 2018, 8, 1801536. doi: 10.1002/aenm.201801536  doi: 10.1002/aenm.201801536

    60. [60]

      Gong, Q.; Ding, P.; Xu, M.; Zhu, X.; Wang, M.; Deng, J.; Ma, Q.; Han, N.; Zhu, Y.; Lu, J.; et al. Nat. Commun. 2019, 10, 2807. doi: 10.1038/s41467-019-10819-4  doi: 10.1038/s41467-019-10819-4

    61. [61]

      Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J. H.; Li, Y. F.; Li, Y. G. Nat. Commun. 2018, 9, 1320. doi: 10.1038/s41467-018-03712-z  doi: 10.1038/s41467-018-03712-z

    62. [62]

      Kim, S.; Dong, W. J.; Gim, S.; Sohn, W.; Park, J. Y.; Yoo, C. J.; Jang, H. W.; Lee, J. L. Nano Energy 2017, 39, 44. doi: 10.1016/j.nanoen.2017.05.065  doi: 10.1016/j.nanoen.2017.05.065

    63. [63]

      Cai, Z.; Zhang, Y.; Zhao, Y.; Wu, Y.; Xu, W.; Wen, X.; Zhong, Y.; Zhang, Y.; Liu, W.; Wang, H.; et al. Nano Res. 2018, 12, 345. doi: 10.1007/s12274-018-2221-7  doi: 10.1007/s12274-018-2221-7

    64. [64]

      Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Adv. Mater. 2019, 31, 1807166. doi: 10.1002/adma.201807166  doi: 10.1002/adma.201807166

    65. [65]

      Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F.; Meng, F.; Min, Y.; Quintero Bermudez, R.; et al. Nat. Catal. 2018, 1, 421. doi: 10.1038/s41929-018-0084-7  doi: 10.1038/s41929-018-0084-7

    66. [66]

      Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; García de Arquer, F. P.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S.; et al. Science 2018, 360, 783. doi: 10.1126/science.aas9100  doi: 10.1126/science.aas9100

    67. [67]

      Burdyny, T.; Smith, W. A. Energy Environ. Sci. 2019, 12, 1431. doi: 10.1039/C8EE03134G  doi: 10.1039/C8EE03134G

    68. [68]

      Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A.; Berlinguette, C. P. Acc. Chem. Res. 2018, 51, 910. doi: 10.1021/acs.accounts.8b00010  doi: 10.1021/acs.accounts.8b00010

    69. [69]

      Sedighian Rasouli, A.; Wang, X.; Wicks, J.; Lee, G.; Peng, T.; Li, F.; McCallum, C.; Dinh, C. T.; Ip, A. H.; Sinton, D. ; et al. ACS Sustainable Chem. Eng. 2020, 8, 14668. doi: 10.1021/acssuschemeng.0c03453  doi: 10.1021/acssuschemeng.0c03453

    70. [70]

      Li, Y.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y.; Yang, P. Nano Lett. 2017, 17, 1312. doi: 10.1021/acs.nanolett.6b05287  doi: 10.1021/acs.nanolett.6b05287

    71. [71]

      Shao, J.; Wang, Y.; Gao, D.; Ye, K.; Wang, Q.; Wang, G. Chin. J. Catal. 2020, 41, 1393. doi: 10.1016/s1872-2067(20)63577-x  doi: 10.1016/s1872-2067(20)63577-x

    72. [72]

      Ma, X.; Shen, Y.; Yao, S.; Shu, M.; Si, R.; An, C. Chem. Eur. J. 2019, 26, 4143. doi: 10.1002/chem.201904619  doi: 10.1002/chem.201904619

    73. [73]

      Li, Y. C.; Wang, Z.; Yuan, T.; Nam, D. H.; Luo, M.; Wicks, J.; Chen, B.; Li, J.; Li, F.; de Arquer, F. P. G.; et al. J. Am. Chem. Soc. 2019, 141, 8584. doi: 10.1021/jacs.9b02945  doi: 10.1021/jacs.9b02945

    74. [74]

      Schreier, M.; Héroguel, F.; Steier, L.; Ahmad, S.; Luterbacher, J. S.; Mayer, M. T.; Luo, J.; Grätzel, M. Nat. Energy 2017, 2, 17087. doi: 10.1038/nenergy.2017.87  doi: 10.1038/nenergy.2017.87

    75. [75]

      Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S.; et al. J. Am. Chem. Soc. 2019, 141, 16569. doi: 10.1021/jacs.9b08259  doi: 10.1021/jacs.9b08259

    76. [76]

      Sun, J.; Zheng, W.; Lyu, S.; He, F.; Yang, B.; Li, Z.; Lei, L.; Hou, Y. Chin. Chem. Lett. 2020, 31, 1415. doi: 10.1016/j.cclet.2020.04.031  doi: 10.1016/j.cclet.2020.04.031

    77. [77]

      Hao, L.; Sun, Z. Acta Phys. -Chim. Sin. 2021, 37, 2009033.  doi: 10.3866/PKU.WHXB202009033

    78. [78]

      Li, H.; Xiao, N.; Wang, Y.; Liu, C.; Zhang, S.; Zhang, H.; Bai, J.; Xiao, J.; Li, C.; Guo, Z.; et al. J. Mater. Chem. A 2020, 8, 1779. doi: 10.1039/c9ta12401b  doi: 10.1039/c9ta12401b

    79. [79]

      Tran Phu, T.; Daiyan, R.; Fusco, Z.; Ma, Z.; Amal, R.; Tricoli, A. Adv. Funct. Mater. 2019, 30, 1906478. doi: 10.1002/adfm.201906478  doi: 10.1002/adfm.201906478

    80. [80]

      Wu, D.; Huo, G.; Chen, W.; Fu, X. Z.; Luo, J. L. Appl. Catal. B: Environ. 2020, 271, 118957. doi: 10.1016/j.apcatb.2020.118957  doi: 10.1016/j.apcatb.2020.118957

    81. [81]

      Jouny, M.; Luc, W.; Jiao, F. Ind. Eng. Chem. Res. 2018, 57, 2165. doi: 10.1021/acs.iecr.7b03514  doi: 10.1021/acs.iecr.7b03514

    82. [82]

      Wang, X. X.; Klingan, K.; Klingenhof, M.; Móller, T.; Araújo, J. F.; Martens, I.; Bagger, A.; Jiang, S.; Rossmeisl, J.; Dau, Holger.; et al. Nat. Commun. 2021, 12, 794. doi: 10.1038/s41467-021-20961-7  doi: 10.1038/s41467-021-20961-7

    83. [83]

      Luo, M.; Wang, Z.; Li, Y. C.; Li, J.; Li, F.; Lum, Y.; Nam, D. H.; Chen, B.; Wicks, J.; Xu, A.; et al. Nat. Commun. 2019, 10, 5814. doi: 10.1038/s41467-019-13833-8  doi: 10.1038/s41467-019-13833-8

    84. [84]

      Li, J.; Xu, A.; Li, F.; Wang, Z.; Zou, C.; Gabardo, C. M.; Wang, Y.; Ozden, A.; Xu, Y.; Nam, D. H.; et al. Nat. Commun. 2020, 11, 3685. doi: 10.1038/s41467-020-17499-5  doi: 10.1038/s41467-020-17499-5

    85. [85]

      Cheng, T.; Xiao, H.; Goddard, W. A. J. Phys. Chem. Lett. 2015, 6, 4767. doi: 10.1021/acs.jpclett.5b02247  doi: 10.1021/acs.jpclett.5b02247

    86. [86]

      Cheng, T.; Xiao, H.; Goddard, W. A. Proc. Natl Acad. Sci. USA 2017, 114, 1795. doi: 10.1073/pnas.1612106114  doi: 10.1073/pnas.1612106114

    87. [87]

      Li, Y.; Xu, A.; Lum, Y.; Wang, X.; Hung, S. F.; Chen, B.; Wang, Z.; Xu, Y.; Li, F.; Abed, J.; et al. Nat. Commun. 2020, 11, 6190. doi: 10.1038/s41467-020-20004-7  doi: 10.1038/s41467-020-20004-7

    88. [88]

      Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y. Adv. Mater. 2013, 25, 5807. doi: 10.1002/adma.201302685  doi: 10.1002/adma.201302685

    89. [89]

      Liu, Y.; Jiang, S.; Li, S.; Zhou, L.; Li, Z.; Li, J.; Shao, M. Appl. Catal. B: Environ. 2019, 247, 107. doi: 10.1016/j.apcatb.2019.01.094  doi: 10.1016/j.apcatb.2019.01.094

    90. [90]

      Zhou, L.; Shao, M. F.; Zhang, C.; Zhao, J.; He, S.; Rao, D.; Wei, M.; Evans, D. G.; Duan, X. Adv. Mater. 2017, 29, 1604080. doi: 10.1002/adma.201604080  doi: 10.1002/adma.201604080

    91. [91]

      Deng, X.; Kang, X.; Li, M.; Xiang, K.; Wang, C.; Guo, Z.; Zhang, J.; Fu, X. Z.; Luo, J. L. J. Mater. Chem. A 2020, 8, 1138. doi: 10.1039/c9ta06917h  doi: 10.1039/c9ta06917h

    92. [92]

      Gu, J.; Aguiar, J. A.; Ferrere, S.; Steirer, K. X.; Yan, Y.; Xiao, C.; Young, James L.; Al Jassim, M.; Neale, N. R.; Turner, J. A. Nat. Energy 2017, 2, 16192. doi: 10.1038/nenergy.2016.192  doi: 10.1038/nenergy.2016.192

    93. [93]

      Wang, J.; Chao, D.; Liu, J.; Li, L.; Lai, L.; Lin, J.; Shen, Z. Nano Energy 2014, 7, 151. doi: 10.1016/j.nanoen.2014.04.019  doi: 10.1016/j.nanoen.2014.04.019

    94. [94]

      Asadi, M.; Kumar, B.; Behranginia, A.; Rosen, B. A.; Baskin, A.; Repnin, N.; Pisasale, D.; Phillips, P.; Zhu, W.; Haasch, R.; et al. Nat. Commun. 2014, 5, 4470. doi: 10.1038/ncomms5470  doi: 10.1038/ncomms5470

    95. [95]

      Zhu, Q.; Sun, X.; Kang, X.; Ma, J.; Qian, Q.; Han, B. Acta Phys. -Chim. Sin. 2016, 32, 261.  doi: 10.3866/PKU.WHXB201512101

    96. [96]

      Xu, J.; Li, X.; Liu, W.; Sun, Y.; Ju, Z.; Yao, T.; Wang, C.; Ju, H.; Zhu, J.; Wei, S.; et al. Angew. Chem. Int. Ed. 2017, 56, 9121. doi: 10.1002/anie.201704928  doi: 10.1002/anie.201704928

    97. [97]

      Shi, G.; Yu, L.; Ba, X.; Zhang, X.; Zhou, J.; Yu, Y. Dalton Trans. 2017, 46, 10569. doi: 10.1039/C6DT04381J  doi: 10.1039/C6DT04381J

    98. [98]

      Kong, X.; Wang, C.; Zheng, H.; Geng, Z.; Bao, J.; Zeng, J. Sci. China Chem. 2021, 64, 1096. doi: 10.1007/s11426-020-9934-0  doi: 10.1007/s11426-020-9934-0

    99. [99]

      Zhao, Z.; Peng, X. Y.; Liu, X. J.; Sun, X. M.; Shi, J.; Han, L. l.; Lia, G. L.; Luo, J. J. Mater. Chem. A 2017, 5, 20239. doi: 10.1039/C7TA05507B  doi: 10.1039/C7TA05507B

    100. [100]

      Ji, L.; Li, L.; Ji, X.; Zhang, Y.; Mou, S.; Wu, T.; Liu, Q.; Li, B.; Zhu, X.; Luo, Y.; et al. Angew. Chem. Int. Ed. 2019, 132, 768. doi: 10.1002/anie.201912836  doi: 10.1002/anie.201912836

    101. [101]

      Landers, A. T.; Fields, M.; Torelli, D. A.; Xiao, J.; Hellstern, T. R.; Francis, S. A.; Tsai, C.; Kibsgaard, J.; Lewis, N. S.; Chan, K.; et al. ACS Energy Lett. 2018, 3, 1450. doi: 10.1021/acsenergylett.8b00237  doi: 10.1021/acsenergylett.8b00237

    102. [102]

      Gu, J.; Hsu, C. S.; Bai, L.; Chen, H. M.; Hu, X. Science 2019, 364, 1091. doi: 10.1126/science.aaw7515  doi: 10.1126/science.aaw7515

    103. [103]

      Wang, A.; Li, J.; Zhang, T. Nat. Rev. Chem. 2018, 2, 65. doi: 10.1038/s41570-018-0010-1  doi: 10.1038/s41570-018-0010-1

    104. [104]

      Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K.; Miao, S.; Zhang, L.; Huang, X.; Wang, H. Y.; Cai, W.; Chen, R.; et al. Nat. Energy 2018, 3, 140. doi: 10.1038/s41560-017-0078-8  doi: 10.1038/s41560-017-0078-8

    105. [105]

      Pan, F.; Zhang, H.; Liu, Z.; Cullen, D.; Liu, K.; More, K.; Wu, G.; Wang, G.; Li, Y. J. Mater. Chem. A 2019, 7, 26231. doi: 10.1039/C9TA08862H  doi: 10.1039/C9TA08862H

    106. [106]

      Cheng, Y.; Zhao, S.; Johannessen, B.; Veder, J. P.; Saunders, M.; Rowles, M. R.; Cheng, M.; Liu, C.; Chisholm, M. F.; De Marco, R.; et al. Adv. Mater. 2018, 30, 1706287. doi: 10.1002/adma.201706287  doi: 10.1002/adma.201706287

    107. [107]

      Huang, X.; Ma, Y.; Zhi, L. Acta Phys. -Chim. Sin. 2021, 37, 2011050.  doi: 10.3866/PKU.WHXB202011050

    108. [108]

      Yang, H.; Lin, Q.; Zhang, C.; Yu, X.; Cheng, Z.; Li, G.; Hu, Q.; Ren, X.; Zhang, Q.; Liu, J.; et al. Nat. Commun. 2020, 11, 593. doi: 10.1038/s41467-020-14402-0  doi: 10.1038/s41467-020-14402-0

    109. [109]

      Zhao, C.; Wang, Y.; Li, Z.; Chen, W.; Xu, Q.; He, D.; Xi, D.; Zhang, Q.; Yuan, T.; Qu, Y.; et al. Joule 2018, 3, 584. doi: 10.1016/j.joule.2018.11.008  doi: 10.1016/j.joule.2018.11.008

    110. [110]

      Xie, W.; Li, H.; Cui, G.; Li, J.; Song, Y.; Li, S.; Zhang, X.; Lee, J. Y.; Shao, M.; Wei, M. Angew. Chem. Int. Ed. 2021, 60, 7382. doi: 10.1002/anie.202014655  doi: 10.1002/anie.202014655

    111. [111]

      Oh, S.; Park, Y. S.; Park, H.; Kim, H.; Jang, J. H.; Choi, I.; Kim, S. K. J. Ind. and Eng. Chem. 2020, 82, 374. doi: 10.1016/j.jiec.2019.11.001  doi: 10.1016/j.jiec.2019.11.001

    112. [112]

      Yang, H. P.; Wu, Y.; Lin, Q.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X.; Lin, Z. Q. Angew. Chem. Int. Ed. 2018, 57, 15476. doi: 10.1002/anie.201809255  doi: 10.1002/anie.201809255

    113. [113]

      Ren, D.; Fong, J.; Yeo, B. S. Nat. Commun. 2018, 9, 925. doi: 10.1038/s41467-018-03286-w  doi: 10.1038/s41467-018-03286-w

    114. [114]

      Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P. ; et al. Nat. Commun. 2016, 7, 12123. doi: 10.1038/ncomms12123  doi: 10.1038/ncomms12123

    115. [115]

      Ren, D.; Deng, Y.; Handoko, A. D.; Chen, C. S.; Malkhandi, S.; Yeo, B. S. ACS Catal. 2015, 5, 2814. doi: 10.1021/cs502128q  doi: 10.1021/cs502128q

    116. [116]

      Peng, Y.; Wu, T.; Sun, L.; Nsanzimana, J. M. V.; Fisher, A. C.; Wang, X. ACS Appl. Mater. Interfaces 2017, 9, 32782. doi: 10.1021/acsami.7b10421  doi: 10.1021/acsami.7b10421

    117. [117]

      Yang, H.; Wu, Y.; Li, G.; Lin, Q.; Hu, Q.; Zhang, Q.; Liu, J.; He, C. J. Am. Chem. Soc. 2019, 141, 12717. doi: 10.1021/jacs.9b04907  doi: 10.1021/jacs.9b04907

    118. [118]

      Low, Q. H.; Loo, N. W. X.; Calle Vallejo, F.; Yeo, B. S. Angew. Chem. Int. Ed. 2019, 58, 2256. doi: 10.1002/anie.201810991  doi: 10.1002/anie.201810991

    119. [119]

      Ren, D.; Wong, N. T.; Handoko, A. D.; Huang, Y.; Yeo, B. S. J. Phys. Chem. Lett. 2016, 7, 20. doi: 10.1021/acs.jpclett.5b02554  doi: 10.1021/acs.jpclett.5b02554

    120. [120]

      Ma, M.; Djanashvili, K.; Smith, W. A. Angew. Chem. Int. Ed. 2016, 55, 6680. doi: 10.1002/anie.201601282  doi: 10.1002/anie.201601282

    121. [121]

      Xie, W.; Song, Y.; Li, S.; Li, J.; Yang, Y.; Liu, W.; Shao, M.; Wei, M. Adv. Funct. Mater. 2019, 29, 1906477. doi: 10.1002/adfm.201906477  doi: 10.1002/adfm.201906477

    122. [122]

      Fan, K.; Li, Z.; Song, Y.; Xie, W.; Shao, M.; Wei, M. Adv. Funct. Mater. 2020, 2008064. doi: 10.1002/adfm.202008064  doi: 10.1002/adfm.202008064

    123. [123]

      Li, S.; Xie, W.; Song, Y.; Shao, M. ACS Sustainable Chem. Eng. 2020, 8, 452. doi: 10.1021/acssuschemeng.9b05754  doi: 10.1021/acssuschemeng.9b05754

    124. [124]

      Xie, W.; Li, J.; Song, Y.; Li, S.; Li, J.; Shao, M. Nano-Micro Lett. 2020, 12, 97. doi: 10.1007/s40820-020-00435-z  doi: 10.1007/s40820-020-00435-z

    125. [125]

      Xiao, K.; Zhou, L.; Shao, M.; Wei, M. J. Mater. Chem. A 2018, 6, 7585. doi: 10.1039/c8ta01067f  doi: 10.1039/c8ta01067f

    126. [126]

      Zhou, L.; Jiang, S.; Liu, Y.; Shao, M.; Wei, M.; Duan, X. ACS Appl. Energy Mater. 2018, 1, 623. doi: 10.1021/acsaem.7b00151  doi: 10.1021/acsaem.7b00151

    127. [127]

      Jiang, S.; Liu, Y.; Xie, W.; Shao, M. J. Energy Chem. 2019, 33, 125. doi: 10.1016/j.jechem.2018.08.010  doi: 10.1016/j.jechem.2018.08.010

    128. [128]

      Huang, X.; Xu, X.; Luan, X.; Cheng, D. Nano Energy 2020, 68, 104332. doi: 10.1016/j.nanoen.2019.104332  doi: 10.1016/j.nanoen.2019.104332

    129. [129]

      Yan, L.; Zhang, B.; Zhu, J.; Li, Y.; Tsiakaras, P.; Kang Shen, P. Appl. Catal. B: Environ. 2020, 265, 118555. doi: 10.1016/j.apcatb.2019.118555  doi: 10.1016/j.apcatb.2019.118555

    130. [130]

      Liu, W.; Dang, L.; Xu, Z.; Yu, H.; Jin, S.; Huber, G. W. ACS Catal. 2018, 8, 5533. doi: 10.1021/acscatal.8b01017  doi: 10.1021/acscatal.8b01017

    131. [131]

      Zhang, M.; Liu, Y.; Liu, B.; Chen, Z.; Xu, H.; Yan, K. ACS Catal. 2020, 10, 5179. doi: 10.1021/acscatal.0c00007  doi: 10.1021/acscatal.0c00007

    132. [132]

      Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi: 10.1021/jacs.0c02973  doi: 10.1021/jacs.0c02973

    133. [133]

      Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Adv. Energy Mater. 2019, 10, 1902338. doi: 10.1002/aenm.201902338  doi: 10.1002/aenm.201902338

    134. [134]

      Lee, W.; Kim, Y. E.; Youn, M. H.; Jeong, S. K.; Park, K. T. Angew. Chem. Int. Ed. 2018, 57, 6883. doi: 10.1002/anie.201803501  doi: 10.1002/anie.201803501

    135. [135]

      Yin, Z.; Peng, H.; Wei, X.; Zhou, H.; Gong, J.; Huai, M.; Xiao, L.; Wang, G.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2019, 12, 2455. doi: 10.1039/c9ee01204d  doi: 10.1039/c9ee01204d

    136. [136]

      Wei, P.; Li, H.; Lin, L.; Gao, D.; Zhang, X.; Gong, H.; Qing, G.; Cai, R.; Wang, G.; Bao, X. Sci. China. Chem. 2020, 63, 1711. doi: 10.1007/s11426-020-9825-9  doi: 10.1007/s11426-020-9825-9

    137. [137]

      Hu, C.; Gong, L.; Xiao, Y.; Yuan, Y.; Bedford, N. M.; Xia, Z.; Ma, L.; Wu, T.; Lin, Y.; Connell, J. W. ; et al. Adv. Mater. 2020, 1907436. doi: 10.1002/adma.201907436  doi: 10.1002/adma.201907436

    138. [138]

      Chen, J.; Zou, K.; Ding, P.; Deng, J.; Zha, C.; Hu, Y.; Zhao, X.; Wu, J.; Fan, J.; Li, Y. Adv. Mater. 2019, 31, 1805484. doi: 10.1002/adma.201805484  doi: 10.1002/adma.201805484

    139. [139]

      Zhang, W.; Hu, C.; Guo, Z.; Dai, L. Angew. Chem. Int. Ed. 2020, 59, 3470. doi: 10.1002/anie.201913687  doi: 10.1002/anie.201913687

    140. [140]

      Wang, K.; Wu, Y.; Cao, X.; Gu, L.; Hu, J. Adv. Funct. Mater. 2020, 30, 1908965. doi: 10.1002/adfm.201908965  doi: 10.1002/adfm.201908965

    141. [141]

      Zheng, W.; Yang, J.; Chen, H.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. ; et al. Adv. Funct. Mater. 2019, 30, 1907658. doi: 10.1002/adfm.201907658  doi: 10.1002/adfm.201907658

    142. [142]

      Xie, J.; Wang, X.; Lv, J.; Huang, Y.; Wu, M.; Wang, Y.; Yao, J. Angew. Chem. Int. Ed. 2018, 57, 16996. doi: 10.1002/anie.201811853  doi: 10.1002/anie.201811853

    143. [143]

      Yang, R.; Xie, J.; Liu, Q.; Huang, Y.; Lv, J.; Ghausi, M. A.; Wang, X.; Peng, Z.; Wu, M.; Wang, Y. J. Mater. Chem. A 2019, 7, 2575. doi: 10.1039/c8ta10958c  doi: 10.1039/c8ta10958c

    144. [144]

      Endrődi, B.; Bencsik, G.; Darvas, F.; Jones, R.; Rajeshwar, K.; Janáky, C. Prog. Energy Combust. 2017, 62, 133. doi: 10.1016/j.pecs.2017.05.005  doi: 10.1016/j.pecs.2017.05.005

    145. [145]

      Gao, D.; Wei, P.; Li, H.; Lin, L.; Wang, G.; Bao, X. Acta Phys. -Chim. Sin. 2021, 37, 2009021.  doi: 10.3866/PKU.WHXB202009021

  • 加载中
    1. [1]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    2. [2]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    3. [3]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    4. [4]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    8. [8]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    9. [9]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    10. [10]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    11. [11]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    17. [17]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    18. [18]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    19. [19]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    20. [20]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

Metrics
  • PDF Downloads(79)
  • Abstract views(2946)
  • HTML views(919)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return