Applications of Graphene in Self-Powered Sensing Systems
- Corresponding author: Jianxin Zhou, zhoujx@nuaa.edu.cn
Citation:
Cong Hu, Junbin Hu, Mengran Liu, Yucheng Zhou, Jiasheng Rong, Jianxin Zhou. Applications of Graphene in Self-Powered Sensing Systems[J]. Acta Physico-Chimica Sinica,
;2022, 38(1): 201208.
doi:
10.3866/PKU.WHXB202012083
Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Nat. Nanotechnol. 2011, 6 (12), 788. doi: 10.1038/Nnano.2011.184
doi: 10.1038/Nnano.2011.184
Xu, J.; Wang, S. H.; Wang, G. J. N.; Zhu, C. X.; Luo, S. C.; Jin, L. H.; Gu, X. D.; Chen, S. C.; Feig, V. R.; To, J. W. F.; et al. Science 2017, 355 (6320), 59. doi: 10.1126/science.aah4496
doi: 10.1126/science.aah4496
Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6 (3), 183. doi: 10.1038/nmat1849
doi: 10.1038/nmat1849
Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146 (9-10), 351. doi: 10.1016/j.ssc.2008.02.024
doi: 10.1016/j.ssc.2008.02.024
Balandin, A. A. Nat. Mater. 2011, 10 (8), 569. doi: 10.1038/nmat3064
doi: 10.1038/nmat3064
Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K. Science 2008, 320 (5881), 1308. doi: 10.1126/science.1156965
doi: 10.1126/science.1156965
Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81 (1), 109. doi: 10.1103/RevModPhys.81.109
doi: 10.1103/RevModPhys.81.109
Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Nat. Rev. Mater. 2017, 2, 17046. doi: 10.1038/natrevmats.2017.46
doi: 10.1038/natrevmats.2017.46
Yin, J.; Li, X.; Yu, J.; Zhang, Z.; Zhou, J.; Guo, W. Nat. Nanotechnol. 2014, 9 (5), 378. doi: 10.1038/nnano.2014.56
doi: 10.1038/nnano.2014.56
Zhang, X. M.; Yang, X. L.; Wang, K. Y. J. Mater. Sci. -Mater. Electron. 2019, 30 (21), 19319. doi: 10.1007/s10854-019-02292-y
doi: 10.1007/s10854-019-02292-y
Li, X.; Hua, T.; Xu, B. Carbon 2017, 118, 686. doi: 10.1016/j.carbon.2017.04.002
doi: 10.1016/j.carbon.2017.04.002
Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M. S.; Mobius, M. E.; et al. Science 2016, 354 (6317), 1257. doi: 10.1126/science.aag2879
doi: 10.1126/science.aag2879
Liu, H.; Li, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. J. Mater. Chem. C 2016, 4 (1), 157. doi: 10.1039/c5tc02751a
doi: 10.1039/c5tc02751a
Qiao, H.; Huang, Z.; Ren, X.; Liu, S.; Zhang, Y.; Qi, X.; Zhang, H. Adv. Opt. Mater. 2019, 8 (1), 1900765. doi: 10.1002/adom.201900765
doi: 10.1002/adom.201900765
Ye, M.; Zhang, Z.; Zhao, Y.; Qu, L. Joule 2018, 2 (2), 245. doi: 10.1016/j.joule.2017.11.011
doi: 10.1016/j.joule.2017.11.011
Wu, Y.; Luo, Y.; Qu, J.; Daoud, W. A.; Qi, T. Nano Energy 2019, 64, 103948. doi: 10.1016/j.nanoen.2019.103948
doi: 10.1016/j.nanoen.2019.103948
Yang, S.; Su, Y.; Xu, Y.; Wu, Q.; Zhang, Y.; Raschke, M. B.; Ren, M.; Chen, Y.; Wang, J.; Guo, W.; et al. J. Am. Chem. Soc. 2018, 140 (42), 13746. doi: 10.1021/jacs.8b07778
doi: 10.1021/jacs.8b07778
Yin, J.; Zhang, Z.; Li, X.; Yu, J.; Zhou, J.; Chen, Y.; Guo, W. Nat. Commun. 2014, 5, 3582. doi: 10.1038/ncomms4582
doi: 10.1038/ncomms4582
Xue, G.; Xu, Y.; Ding, T.; Li, J.; Yin, J.; Fei, W.; Cao, Y.; Yu, J.; Yuan, L.; Gong, L.; et al. Nat. Nanotechnol. 2017, 12 (4), 317. doi: 10.1038/nnano.2016.300
doi: 10.1038/nnano.2016.300
Chun, S.; Son, W.; Lee, G.; Kim, S. H.; Park, J. W.; Kim, S. J.; Pang, C.; Choi, C. ACS Appl. Mater. Interfaces 2019, 11 (9), 9301. doi: 10.1021/acsami.8b20143
doi: 10.1021/acsami.8b20143
Wang, X.; Gao, J.; Cheng, Z.; Chen, N.; Qu, L. Angew. Chem. Int. Ed. 2016, 55 (47), 14643. doi: 10.1002/anie.201608163
doi: 10.1002/anie.201608163
Wang, Y. M.; Wang, Y.; Yang, Y. Adv. Energy Mater. 2018, 8 (22), 1800961. doi: 10.1002/aenm.201800961
doi: 10.1002/aenm.201800961
Chong, W. G.; Huang, J. Q.; Xu, Z. L.; Qin, X.; Wang, X.; Kim, J. -K. Adv. Funct. Mater. 2017, 27 (4), 1604815. doi: 10.1002/adfm.201604815
doi: 10.1002/adfm.201604815
Ye, M.; Cheng, H.; Gao, J.; Li, C.; Qu, L. J. Mater. Chem. A 2016, 4 (48), 19154. doi: 10.1039/c6ta08569e
doi: 10.1039/c6ta08569e
Periyanagounder, D.; Gnanasekar, P.; Varadhan, P.; He, J. H.; Kulandaivel, J. J. Mater. Chem. C 2018, 6 (35), 9545. doi: 10.1039/c8tc02786b
doi: 10.1039/c8tc02786b
Xiang, D.; Han, C.; Hu, Z.; Lei, B.; Liu, Y.; Wang, L.; Hu, W. P.; Chen, W. Small 2015, 11 (37), 4829. doi: 10.1002/smll.201501298
doi: 10.1002/smll.201501298
Chaliyawala, H.; Aggarwal, N.; Purohit, Z.; Patel, R.; Gupta, G.; Jaffre, A.; Le Gall, S.; Ray, A.; Mukhopadhyay, I. Nanotechnology 2020, 31 (22), 225208. doi: 10.1088/1361-6528/ab767f
doi: 10.1088/1361-6528/ab767f
Zeng, L.; Xie, C.; Tao, L.; Long, H.; Tang, C.; Tsang, Y. H.; Jie, J. Opt. Express 2015, 23 (4), 4839. doi: 10.1364/OE.23.004839
doi: 10.1364/OE.23.004839
Wu, Y.; Yan, X.; Zhang, X.; Ren, X. Appl. Phys. Lett. 2016, 109, 183101. doi: 10.1063/1.4966899
doi: 10.1063/1.4966899
Lu, Y.; Feng, S.; Wu, Z.; Gao, Y.; Yang, J.; Zhang, Y.; Hao, Z.; Li, J.; Li, E.; Chen, H.; et al. Nano Energy 2018, 47, 140. doi: 10.1016/j.nanoen.2018.02.056
doi: 10.1016/j.nanoen.2018.02.056
Wu, J.; Yang, Z.; Qiu, C.; Zhang, Y.; Wu, Z.; Yang, J.; Lu, Y.; Li, J.; Yang, D.; Hao, R.; et al. Nanoscale 2018, 10 (17), 8023. doi: 10.1039/c8nr00594j
doi: 10.1039/c8nr00594j
Li, H.; Li, X.; Park, J. H.; Tao, L.; Kim, K. K.; Lee, Y. H.; Xu, J. -B. Nano Energy 2019, 57, 214. doi: 10.1016/j.nanoen.2018.12.004
doi: 10.1016/j.nanoen.2018.12.004
Chen, Z.; Zhang, Z.; Biscaras, J.; Shukla, A. J. Mater. Chem. C 2018, 6 (45), 12407. doi: 10.1039/c8tc04378g
doi: 10.1039/c8tc04378g
Lv, Q.; Yan, F.; Wei, X.; Wang, K. Adv. Opt. Mater. 2018, 6 (2), 1700490. doi: 10.1002/adom.201700490
doi: 10.1002/adom.201700490
Lee, D.; Park, H.; Han, S. D.; Kim, S. H.; Huh, W.; Lee, J. Y.; Kim, Y. S.; Park, M. J.; Park, W. I.; Kang, C. Y.; et al. Small 2019, 15 (2), e1804303. doi: 10.1002/smll.201804303
doi: 10.1002/smll.201804303
Moon, I. K.; Ki, B.; Yoon, S.; Choi, J.; Oh, J. Sci. Rep. 2016, 6, 33525. doi: 10.1038/srep33525
doi: 10.1038/srep33525
Yang, J.; Liu, P.; Wei, X.; Luo, W.; Yang, J.; Jiang, H.; Wei, D.; Shi, R.; Shi, H. ACS Appl. Mater. Interfaces 2017, 9 (41), 36017. doi: 10.1021/acsami.7b10373
doi: 10.1021/acsami.7b10373
Liu, Z. X.; Zhao, Z. Z.; Zeng, X. W.; Fu, X. L.; Hu, Y. F. J. Phys. D Appl. Phys. 2019, 52, 314002. doi: 10.1088/1361-6463/ab1faa
doi: 10.1088/1361-6463/ab1faa
Xu, Z. W.; Wu, C. X.; Li, F. S.; Chen, W.; Guo, T. L.; Kim, T. W. Nano Energy 2018, 49, 274. doi: 10.1016/j.nanoen.2018.04.059
doi: 10.1016/j.nanoen.2018.04.059
Zhao, X.; Chen, B.; Wei, G.; Wu, J. M.; Han, W.; Yang, Y. Adv. Mater. Technol. 2019, 4 (5), 1800723. doi: 10.1002/admt.201800723
doi: 10.1002/admt.201800723
Chun, S.; Son, W.; Kim, H.; Lim, S. K.; Pang, C.; Choi, C. Nano Lett. 2019, 19 (5), 3305. doi: 10.1021/acs.nanolett.9b00922
doi: 10.1021/acs.nanolett.9b00922
Zhang, D.; Xu, Z.; Yang, Z.; Song, X. Nano Energy 2020, 67, 104251. doi: 10.1016/j.nanoen.2019.104251
doi: 10.1016/j.nanoen.2019.104251
Su, Y.; Xie, G.; Tai, H.; Li, S.; Yang, B.; Wang, S.; Zhang, Q.; Du, H.; Zhang, H.; Du, X.; et al. Nano Energy 2018, 47, 316. doi: 10.1016/j.nanoen.2018.02.031
doi: 10.1016/j.nanoen.2018.02.031
Kwak, S. S.; Lin, S.; Lee, J. H.; Ryu, H.; Kim, T. Y.; Zhong, H.; Chen, H.; Kim, S. W. ACS Nano 2016, 10 (8), 7297. doi: 10.1021/acsnano.6b03032
doi: 10.1021/acsnano.6b03032
Zhao, F.; Cheng, H.; Zhang, Z.; Jiang, L.; Qu, L. Adv. Mater. 2015, 27 (29), 4351. doi: 10.1002/adma.201501867
doi: 10.1002/adma.201501867
Zhao, F.; Liang, Y.; Cheng, H.; Jiang, L.; Qu, L. Energ. Environ. Sci. 2016, 9 (3), 912. doi: 10.1039/c5ee03701h
doi: 10.1039/c5ee03701h
Liang, Y.; Zhao, F.; Cheng, Z.; Deng, Y.; Xiao, Y.; Cheng, H.; Zhang, P.; Huang, Y.; Shao, H.; Qu, L. Energy Environ. Sci. 2018, 11 (7), 1730. doi: 10.1039/c8ee00671g
doi: 10.1039/c8ee00671g
Zhang, D.; Zhang, K.; Wang, Y.; Wang, Y.; Yang, Y. Nano Energy 2019, 56, 25. doi: 10.1016/j.nanoen.2018.11.026
doi: 10.1016/j.nanoen.2018.11.026
Xie, Y.; Chou, T. M.; Yang, W.; He, M.; Zhao, Y.; Li, N.; Lin, Z. H. Semicond. Sci. Technol. 2017, 32 (4), 044003. doi: 10.1088/1361-6641/aa62f2
doi: 10.1088/1361-6641/aa62f2
Liu, Y.; Hu, Y.; Zhao, J.; Wu, G.; Tao, X.; Chen, W. Small 2016, 12 (36), 5074. doi: 10.1002/smll.201600553
doi: 10.1002/smll.201600553
Zhang, F.; Zhang, T. F.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.; Chen, Y. S. Energ. Environ. Sci. 2013, 6 (5), 1623. doi: 10.1039/c3ee40509e
doi: 10.1039/c3ee40509e
Song, Z. M.; Ma, T.; Tang, R.; Cheng, Q.; Wang, X.; Krishnaraju, D.; Panat, R.; Chan, C. K.; Yu, H. Y.; Jiang, H. Q. Nat. Commun. 2014, 5, 3140. doi: 10.1038/ncomms4140
doi: 10.1038/ncomms4140
Wang, L.; Zhang, Y.; Pan, J.; Peng, H. S. J. Mater. Chem. A 2016, 4 (35), 13419. doi: 10.1039/c6ta05800k
doi: 10.1039/c6ta05800k
Lv, Z. S.; Tang, Y. X.; Zhu, Z. Q.; Wei, J. Q.; Li, W. L.; Xia, H. R.; Jiang, Y.; Liu, Z. Y.; Luo, Y. F.; Ge, X.; et al. Adv. Mater. 2018, 30 (50), 1805468. doi: 10.1002/adma.201805468
doi: 10.1002/adma.201805468
Mackanic, D. G.; Chang, T. H.; Huang, Z.; Cui, Y.; Bao, Z. Chem. Soc. Rev. 2020, 49 (13), 4466. doi: 10.1039/d0cs00035c
doi: 10.1039/d0cs00035c
Wang, B.; Ruan, T.; Chen, Y.; Jin, F.; Peng, L.; Zhou, Y.; Wang, D.; Dou, S. Energy Storage Mater. 2020, 24, 22. doi: 10.1016/j.ensm.2019.08.004
doi: 10.1016/j.ensm.2019.08.004
Zhang, P.; Zhu, F.; Wang, F.; Wang, J.; Dong, R.; Zhuang, X.; Schmidt, O. G.; Feng, X. Adv. Mater. 2017, 29 (7), 1604491. doi: 10.1002/adma.201604491
doi: 10.1002/adma.201604491
Qiao, H.; Huang, Z.; Ren, X.; Liu, S.; Zhang, Y.; Qi, X.; Zhang, H. Adv. Opt. Mater. 2019, 8 (1), 1900765. doi: 10.1002/adom.201900765
doi: 10.1002/adom.201900765
Tao, Z.; Zhou, D.; Yin, H.; Cai, B.; Huo, T.; Ma, J.; Di, Z.; Hu, N.; Yang, Z.; Su, Y. Mat. Sci. Semicond. Process 2020, 111, 104989. doi: 10.1016/j.mssp.2020.104989
doi: 10.1016/j.mssp.2020.104989
Li, J.; Yuan, S.; Tang, G.; Li, G.; Liu, D.; Li, J.; Hu, X.; Liu, Y.; Li, J.; Yang, Z.; et al. ACS Appl. Mater. Interfaces 2017, 9 (49), 42779. doi: 10.1021/acsami.7b14110
doi: 10.1021/acsami.7b14110
Huang, C. Y.; Kang, C. C.; Ma, Y. C.; Chou, Y. C.; Ye, J. H.; Huang, R. T.; Siao, C. Z.; Lin, Y. C.; Chang, Y. H.; Shen, J. L.; et al. Nanotechnology 2018, 29 (44), 445201. doi: 10.1088/1361-6528/aadad8
doi: 10.1088/1361-6528/aadad8
Li, Z.; Zheng, Q.; Wang, Z. L.; Li, Z. Research 2020, 2020, 8710686. doi: 10.34133/2020/8710686
doi: 10.34133/2020/8710686
Fan, F. -R.; Tian, Z. Q.; Lin Wang, Z. Nano Energy 2012, 1 (2), 328. doi: 10.1016/j.nanoen.2012.01.004
doi: 10.1016/j.nanoen.2012.01.004
Chang, J.; Meng, H.; Li, C.; Gao, J.; Chen, S.; Hu, Q.; Li, H.; Feng, L. Adv. Mater. Technol. 2020, 5 (5), 1901087. doi: 10.1002/admt.201901087
doi: 10.1002/admt.201901087
Sun, C. H.; Shi, Q. F.; Hasan, D.; Yazici, M. S.; Zhu, M. L.; Ma, Y. M.; Dong, B. W.; Liu, Y. F.; Lee, C. Nano Energy 2019, 58, 612. doi: 10.1016/j.nanoen.2019.01.096
doi: 10.1016/j.nanoen.2019.01.096
Jiang, C.; Li, X.; Yao, Y.; Lan, L.; Shao, Y.; Zhao, F.; Ying, Y.; Ping, J. Nano Energy 2019, 66, 104121. doi: 10.1016/j.nanoen.2019.104121
doi: 10.1016/j.nanoen.2019.104121
Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321 (5887), 385. doi: 10.1126/science.1157996
doi: 10.1126/science.1157996
Stanford, M. G.; Li, J. T.; Chyan, Y.; Wang, Z.; Wang, W.; Tour, J. M. ACS Nano 2019, 13 (6), 7166. doi: 10.1021/acsnano.9b02596
doi: 10.1021/acsnano.9b02596
Parandeh, S.; Kharaziha, M.; Karimzadeh, F. Nano Energy 2019, 59, 412. doi: 10.1016/j.nanoen.2019.02.058
doi: 10.1016/j.nanoen.2019.02.058
Guo, H.; Li, T.; Cao, X.; Xiong, J.; Jie, Y.; Willander, M.; Cao, X.; Wang, N.; Wang, Z. L. ACS Nano 2017, 11 (1), 856. doi: 10.1021/acsnano.6b07389
doi: 10.1021/acsnano.6b07389
Chu, H.; Jang, H.; Lee, Y.; Chae, Y.; Ahn, J. H. Nano Energy 2016, 27, 298. doi: 10.1016/j.nanoen.2016.07.009
doi: 10.1016/j.nanoen.2016.07.009
Lee, Y.; Kim, J.; Jang, B.; Kim, S.; Sharma, B. K.; Kim, J. H.; Ahn, J. H. Nano Energy 2019, 62, 259. doi: 10.1016/j.nanoen.2019.05.039
doi: 10.1016/j.nanoen.2019.05.039
Zhou, K. K.; Zhao, Y.; Sun, X. P.; Yuan, Z. Q.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Nano Energy 2020, 70, 104546. doi: 10.1016/j.nanoen.2020.104546
doi: 10.1016/j.nanoen.2020.104546
Zhang, Z.; Li, X.; Yin, J.; Xu, Y.; Fei, W.; Xue, M.; Wang, Q.; Zhou, J.; Guo, W. Nat. Nanotechnol. 2018, 13 (12), 1109. doi: 10.1038/s41565-018-0228-6
doi: 10.1038/s41565-018-0228-6
Yin, J.; Zhou, J.; Fang, S.; Guo, W. Joule 2020, 4 (9), 1852. doi: 10.1016/j.joule.2020.07.015
doi: 10.1016/j.joule.2020.07.015
Zhong, H.; Xia, J.; Wang, F.; Chen, H.; Wu, H.; Lin, S. Adv. Funct. Mater. 2017, 27 (5), 1604226. doi: 10.1002/adfm.201604226
doi: 10.1002/adfm.201604226
Yu, X.; Yin, H.; Li, H.; Zhao, H.; Li, C.; Zhu, M. J. Mater. Chem. C 2018, 6 (3), 630. doi: 10.1039/c7tc05224c
doi: 10.1039/c7tc05224c
Roy, K.; Ghosh, S. K.; Sultana, A.; Garain, S.; Xie, M. Y.; Bowen, C. R.; Henkel, K.; Schmeisser, D.; Mandal, D. ACS Appl. Nano Mater. 2019, 2 (4), 2013. doi: 10.1021/acsanm.9b00033
doi: 10.1021/acsanm.9b00033
Sahatiya, P.; Shinde, A.; Badhulika, S. Nanotechnology 2018, 29 (32), 325205. doi: 10.1088/1361-6528/aac65b
doi: 10.1088/1361-6528/aac65b
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Meiqing Yang , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
Yuhang Zhang , Weiwei Zhao , Hongwei Liu , Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045
Meirong Cui , Mo Xie , Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043