Citation: Cong Hu, Junbin Hu, Mengran Liu, Yucheng Zhou, Jiasheng Rong, Jianxin Zhou. Applications of Graphene in Self-Powered Sensing Systems[J]. Acta Physico-Chimica Sinica, ;2022, 38(1): 201208. doi: 10.3866/PKU.WHXB202012083 shu

Applications of Graphene in Self-Powered Sensing Systems

  • Corresponding author: Jianxin Zhou, zhoujx@nuaa.edu.cn
  • Received Date: 30 December 2020
    Revised Date: 19 January 2021
    Accepted Date: 22 January 2021
    Available Online: 1 February 2021

    Fund Project: the National Key Research and Development Program of China 2019YFA0705400the National Natural Science Foundation of China 12072151the National Natural Science Foundation of China 51535005the Fundamental Research Funds for the Central Universities, China NJ2020003the Fundamental Research Funds for the Central Universities, China NZ2020001

  • The advancements in the development of intelligent systems have resulted in an increase in the number, density, and distribution range of sensors. Traditional energy supply methods cannot meet the demands of the complex and variable sensor systems. However, the emergence of self-powered sensing devices that generate energy from their surroundings has provided a solution to this problem. Graphene, which has both an excellent sensing performance and wide range of applications in energy devices, facilitates the design of self-powered sensing systems. In recent years, several graphene-based self-powered sensors have been developed to overcome the design limitations of sensing systems. In this review, these sensors are divided into five categories according to their different energy conversion methods. (1) Self-powered by the electrochemical effect. The traditional electrochemical battery can be designed as a flexible structure that is responsive to external stimuli, including pressure, deformation, humidity, light, and temperature. It is an effective, stable, self-driving sensor, with working life determined by the amount of oxidizing/reducing agent present and the reaction rate. Flexible electrochemical cells with a high strain sensitivity ((I/I0)/ε = 124) and stretchability (2000%) have been achieved. (2) Self-powered by the photovoltaic effect. Graphene can form a Schottky junction when coupled with various semiconducting materials, such as Si, GaAs, MoS2, and some of their nanostructures. In these heterostructures, the van der Waals interface exhibits a Schottky barrier, which can separate photogenerated electron-hole pairs without external bias. Graphene-based Schottky junctions have been widely used as self-powered photodetectors with extremely high responsivities (~149 A·W-1). (3) Self-powered by the triboelectric effect. The contact and separation of two surfaces can result in the separation of charges due to the difference in electron affinities of the materials. This results in an induced electrostatic force between the electrodes, thereby driving the flow of electrons in an external circuit. Triboelectric nanogenerators can realize self-driving touch/pressure sensing and are used for several applications, including touch screens, neural finger skin, and electronic skin. (4) Self-powered by the hydrovoltaic effect. Graphene can interact with water at the solid-liquid interface and generate an electrical signal. Therefore, graphene-based hydrovoltaic devices can constitute very simple self-driving sensors that are efficient in determining fluid flow, solution concentration, and humidity, among others. (5) Self-powered by other effects, such as the thermoelectric effect, piezoelectric effect, or pyroelectric effect. Although the electrical signals generated by these effects are relatively weak, they can be used for some special applications, such as temperature or infrared sensors. Finally, we discuss the future developments, challenges, and prospects of graphene-based self-powered sensing devices and systems.
  • 加载中
    1. [1]

      Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Nat. Nanotechnol. 2011, 6 (12), 788. doi: 10.1038/Nnano.2011.184  doi: 10.1038/Nnano.2011.184

    2. [2]

      Xu, J.; Wang, S. H.; Wang, G. J. N.; Zhu, C. X.; Luo, S. C.; Jin, L. H.; Gu, X. D.; Chen, S. C.; Feig, V. R.; To, J. W. F.; et al. Science 2017, 355 (6320), 59. doi: 10.1126/science.aah4496  doi: 10.1126/science.aah4496

    3. [3]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6 (3), 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    4. [4]

      Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146 (9-10), 351. doi: 10.1016/j.ssc.2008.02.024  doi: 10.1016/j.ssc.2008.02.024

    5. [5]

      Balandin, A. A. Nat. Mater. 2011, 10 (8), 569. doi: 10.1038/nmat3064  doi: 10.1038/nmat3064

    6. [6]

      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K. Science 2008, 320 (5881), 1308. doi: 10.1126/science.1156965  doi: 10.1126/science.1156965

    7. [7]

      Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81 (1), 109. doi: 10.1103/RevModPhys.81.109  doi: 10.1103/RevModPhys.81.109

    8. [8]

      Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Nat. Rev. Mater. 2017, 2, 17046. doi: 10.1038/natrevmats.2017.46  doi: 10.1038/natrevmats.2017.46

    9. [9]

      Yin, J.; Li, X.; Yu, J.; Zhang, Z.; Zhou, J.; Guo, W. Nat. Nanotechnol. 2014, 9 (5), 378. doi: 10.1038/nnano.2014.56  doi: 10.1038/nnano.2014.56

    10. [10]

      Zhang, X. M.; Yang, X. L.; Wang, K. Y. J. Mater. Sci. -Mater. Electron. 2019, 30 (21), 19319. doi: 10.1007/s10854-019-02292-y  doi: 10.1007/s10854-019-02292-y

    11. [11]

      Li, X.; Hua, T.; Xu, B. Carbon 2017, 118, 686. doi: 10.1016/j.carbon.2017.04.002  doi: 10.1016/j.carbon.2017.04.002

    12. [12]

      Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M. S.; Mobius, M. E.; et al. Science 2016, 354 (6317), 1257. doi: 10.1126/science.aag2879  doi: 10.1126/science.aag2879

    13. [13]

      Liu, H.; Li, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. J. Mater. Chem. C 2016, 4 (1), 157. doi: 10.1039/c5tc02751a  doi: 10.1039/c5tc02751a

    14. [14]

      Qiao, H.; Huang, Z.; Ren, X.; Liu, S.; Zhang, Y.; Qi, X.; Zhang, H. Adv. Opt. Mater. 2019, 8 (1), 1900765. doi: 10.1002/adom.201900765  doi: 10.1002/adom.201900765

    15. [15]

      Ye, M.; Zhang, Z.; Zhao, Y.; Qu, L. Joule 2018, 2 (2), 245. doi: 10.1016/j.joule.2017.11.011  doi: 10.1016/j.joule.2017.11.011

    16. [16]

      Wu, Y.; Luo, Y.; Qu, J.; Daoud, W. A.; Qi, T. Nano Energy 2019, 64, 103948. doi: 10.1016/j.nanoen.2019.103948  doi: 10.1016/j.nanoen.2019.103948

    17. [17]

      Yang, S.; Su, Y.; Xu, Y.; Wu, Q.; Zhang, Y.; Raschke, M. B.; Ren, M.; Chen, Y.; Wang, J.; Guo, W.; et al. J. Am. Chem. Soc. 2018, 140 (42), 13746. doi: 10.1021/jacs.8b07778  doi: 10.1021/jacs.8b07778

    18. [18]

      Yin, J.; Zhang, Z.; Li, X.; Yu, J.; Zhou, J.; Chen, Y.; Guo, W. Nat. Commun. 2014, 5, 3582. doi: 10.1038/ncomms4582  doi: 10.1038/ncomms4582

    19. [19]

      Xue, G.; Xu, Y.; Ding, T.; Li, J.; Yin, J.; Fei, W.; Cao, Y.; Yu, J.; Yuan, L.; Gong, L.; et al. Nat. Nanotechnol. 2017, 12 (4), 317. doi: 10.1038/nnano.2016.300  doi: 10.1038/nnano.2016.300

    20. [20]

      Chun, S.; Son, W.; Lee, G.; Kim, S. H.; Park, J. W.; Kim, S. J.; Pang, C.; Choi, C. ACS Appl. Mater. Interfaces 2019, 11 (9), 9301. doi: 10.1021/acsami.8b20143  doi: 10.1021/acsami.8b20143

    21. [21]

      Wang, X.; Gao, J.; Cheng, Z.; Chen, N.; Qu, L. Angew. Chem. Int. Ed. 2016, 55 (47), 14643. doi: 10.1002/anie.201608163  doi: 10.1002/anie.201608163

    22. [22]

      Wang, Y. M.; Wang, Y.; Yang, Y. Adv. Energy Mater. 2018, 8 (22), 1800961. doi: 10.1002/aenm.201800961  doi: 10.1002/aenm.201800961

    23. [23]

      Chong, W. G.; Huang, J. Q.; Xu, Z. L.; Qin, X.; Wang, X.; Kim, J. -K. Adv. Funct. Mater. 2017, 27 (4), 1604815. doi: 10.1002/adfm.201604815  doi: 10.1002/adfm.201604815

    24. [24]

      Ye, M.; Cheng, H.; Gao, J.; Li, C.; Qu, L. J. Mater. Chem. A 2016, 4 (48), 19154. doi: 10.1039/c6ta08569e  doi: 10.1039/c6ta08569e

    25. [25]

      Periyanagounder, D.; Gnanasekar, P.; Varadhan, P.; He, J. H.; Kulandaivel, J. J. Mater. Chem. C 2018, 6 (35), 9545. doi: 10.1039/c8tc02786b  doi: 10.1039/c8tc02786b

    26. [26]

      Xiang, D.; Han, C.; Hu, Z.; Lei, B.; Liu, Y.; Wang, L.; Hu, W. P.; Chen, W. Small 2015, 11 (37), 4829. doi: 10.1002/smll.201501298  doi: 10.1002/smll.201501298

    27. [27]

      Chaliyawala, H.; Aggarwal, N.; Purohit, Z.; Patel, R.; Gupta, G.; Jaffre, A.; Le Gall, S.; Ray, A.; Mukhopadhyay, I. Nanotechnology 2020, 31 (22), 225208. doi: 10.1088/1361-6528/ab767f  doi: 10.1088/1361-6528/ab767f

    28. [28]

      Zeng, L.; Xie, C.; Tao, L.; Long, H.; Tang, C.; Tsang, Y. H.; Jie, J. Opt. Express 2015, 23 (4), 4839. doi: 10.1364/OE.23.004839  doi: 10.1364/OE.23.004839

    29. [29]

      Wu, Y.; Yan, X.; Zhang, X.; Ren, X. Appl. Phys. Lett. 2016, 109, 183101. doi: 10.1063/1.4966899  doi: 10.1063/1.4966899

    30. [30]

      Lu, Y.; Feng, S.; Wu, Z.; Gao, Y.; Yang, J.; Zhang, Y.; Hao, Z.; Li, J.; Li, E.; Chen, H.; et al. Nano Energy 2018, 47, 140. doi: 10.1016/j.nanoen.2018.02.056  doi: 10.1016/j.nanoen.2018.02.056

    31. [31]

      Wu, J.; Yang, Z.; Qiu, C.; Zhang, Y.; Wu, Z.; Yang, J.; Lu, Y.; Li, J.; Yang, D.; Hao, R.; et al. Nanoscale 2018, 10 (17), 8023. doi: 10.1039/c8nr00594j  doi: 10.1039/c8nr00594j

    32. [32]

      Li, H.; Li, X.; Park, J. H.; Tao, L.; Kim, K. K.; Lee, Y. H.; Xu, J. -B. Nano Energy 2019, 57, 214. doi: 10.1016/j.nanoen.2018.12.004  doi: 10.1016/j.nanoen.2018.12.004

    33. [33]

      Chen, Z.; Zhang, Z.; Biscaras, J.; Shukla, A. J. Mater. Chem. C 2018, 6 (45), 12407. doi: 10.1039/c8tc04378g  doi: 10.1039/c8tc04378g

    34. [34]

      Lv, Q.; Yan, F.; Wei, X.; Wang, K. Adv. Opt. Mater. 2018, 6 (2), 1700490. doi: 10.1002/adom.201700490  doi: 10.1002/adom.201700490

    35. [35]

      Lee, D.; Park, H.; Han, S. D.; Kim, S. H.; Huh, W.; Lee, J. Y.; Kim, Y. S.; Park, M. J.; Park, W. I.; Kang, C. Y.; et al. Small 2019, 15 (2), e1804303. doi: 10.1002/smll.201804303  doi: 10.1002/smll.201804303

    36. [36]

      Moon, I. K.; Ki, B.; Yoon, S.; Choi, J.; Oh, J. Sci. Rep. 2016, 6, 33525. doi: 10.1038/srep33525  doi: 10.1038/srep33525

    37. [37]

      Yang, J.; Liu, P.; Wei, X.; Luo, W.; Yang, J.; Jiang, H.; Wei, D.; Shi, R.; Shi, H. ACS Appl. Mater. Interfaces 2017, 9 (41), 36017. doi: 10.1021/acsami.7b10373  doi: 10.1021/acsami.7b10373

    38. [38]

      Liu, Z. X.; Zhao, Z. Z.; Zeng, X. W.; Fu, X. L.; Hu, Y. F. J. Phys. D Appl. Phys. 2019, 52, 314002. doi: 10.1088/1361-6463/ab1faa  doi: 10.1088/1361-6463/ab1faa

    39. [39]

      Xu, Z. W.; Wu, C. X.; Li, F. S.; Chen, W.; Guo, T. L.; Kim, T. W. Nano Energy 2018, 49, 274. doi: 10.1016/j.nanoen.2018.04.059  doi: 10.1016/j.nanoen.2018.04.059

    40. [40]

      Zhao, X.; Chen, B.; Wei, G.; Wu, J. M.; Han, W.; Yang, Y. Adv. Mater. Technol. 2019, 4 (5), 1800723. doi: 10.1002/admt.201800723  doi: 10.1002/admt.201800723

    41. [41]

      Chun, S.; Son, W.; Kim, H.; Lim, S. K.; Pang, C.; Choi, C. Nano Lett. 2019, 19 (5), 3305. doi: 10.1021/acs.nanolett.9b00922  doi: 10.1021/acs.nanolett.9b00922

    42. [42]

      Zhang, D.; Xu, Z.; Yang, Z.; Song, X. Nano Energy 2020, 67, 104251. doi: 10.1016/j.nanoen.2019.104251  doi: 10.1016/j.nanoen.2019.104251

    43. [43]

      Su, Y.; Xie, G.; Tai, H.; Li, S.; Yang, B.; Wang, S.; Zhang, Q.; Du, H.; Zhang, H.; Du, X.; et al. Nano Energy 2018, 47, 316. doi: 10.1016/j.nanoen.2018.02.031  doi: 10.1016/j.nanoen.2018.02.031

    44. [44]

      Kwak, S. S.; Lin, S.; Lee, J. H.; Ryu, H.; Kim, T. Y.; Zhong, H.; Chen, H.; Kim, S. W. ACS Nano 2016, 10 (8), 7297. doi: 10.1021/acsnano.6b03032  doi: 10.1021/acsnano.6b03032

    45. [45]

      Zhao, F.; Cheng, H.; Zhang, Z.; Jiang, L.; Qu, L. Adv. Mater. 2015, 27 (29), 4351. doi: 10.1002/adma.201501867  doi: 10.1002/adma.201501867

    46. [46]

      Zhao, F.; Liang, Y.; Cheng, H.; Jiang, L.; Qu, L. Energ. Environ. Sci. 2016, 9 (3), 912. doi: 10.1039/c5ee03701h  doi: 10.1039/c5ee03701h

    47. [47]

      Liang, Y.; Zhao, F.; Cheng, Z.; Deng, Y.; Xiao, Y.; Cheng, H.; Zhang, P.; Huang, Y.; Shao, H.; Qu, L. Energy Environ. Sci. 2018, 11 (7), 1730. doi: 10.1039/c8ee00671g  doi: 10.1039/c8ee00671g

    48. [48]

      Zhang, D.; Zhang, K.; Wang, Y.; Wang, Y.; Yang, Y. Nano Energy 2019, 56, 25. doi: 10.1016/j.nanoen.2018.11.026  doi: 10.1016/j.nanoen.2018.11.026

    49. [49]

      Xie, Y.; Chou, T. M.; Yang, W.; He, M.; Zhao, Y.; Li, N.; Lin, Z. H. Semicond. Sci. Technol. 2017, 32 (4), 044003. doi: 10.1088/1361-6641/aa62f2  doi: 10.1088/1361-6641/aa62f2

    50. [50]

      Liu, Y.; Hu, Y.; Zhao, J.; Wu, G.; Tao, X.; Chen, W. Small 2016, 12 (36), 5074. doi: 10.1002/smll.201600553  doi: 10.1002/smll.201600553

    51. [51]

      Zhang, F.; Zhang, T. F.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.; Chen, Y. S. Energ. Environ. Sci. 2013, 6 (5), 1623. doi: 10.1039/c3ee40509e  doi: 10.1039/c3ee40509e

    52. [52]

      Song, Z. M.; Ma, T.; Tang, R.; Cheng, Q.; Wang, X.; Krishnaraju, D.; Panat, R.; Chan, C. K.; Yu, H. Y.; Jiang, H. Q. Nat. Commun. 2014, 5, 3140. doi: 10.1038/ncomms4140  doi: 10.1038/ncomms4140

    53. [53]

      Wang, L.; Zhang, Y.; Pan, J.; Peng, H. S. J. Mater. Chem. A 2016, 4 (35), 13419. doi: 10.1039/c6ta05800k  doi: 10.1039/c6ta05800k

    54. [54]

      Lv, Z. S.; Tang, Y. X.; Zhu, Z. Q.; Wei, J. Q.; Li, W. L.; Xia, H. R.; Jiang, Y.; Liu, Z. Y.; Luo, Y. F.; Ge, X.; et al. Adv. Mater. 2018, 30 (50), 1805468. doi: 10.1002/adma.201805468  doi: 10.1002/adma.201805468

    55. [55]

      Mackanic, D. G.; Chang, T. H.; Huang, Z.; Cui, Y.; Bao, Z. Chem. Soc. Rev. 2020, 49 (13), 4466. doi: 10.1039/d0cs00035c  doi: 10.1039/d0cs00035c

    56. [56]

      Wang, B.; Ruan, T.; Chen, Y.; Jin, F.; Peng, L.; Zhou, Y.; Wang, D.; Dou, S. Energy Storage Mater. 2020, 24, 22. doi: 10.1016/j.ensm.2019.08.004  doi: 10.1016/j.ensm.2019.08.004

    57. [57]

      Zhang, P.; Zhu, F.; Wang, F.; Wang, J.; Dong, R.; Zhuang, X.; Schmidt, O. G.; Feng, X. Adv. Mater. 2017, 29 (7), 1604491. doi: 10.1002/adma.201604491  doi: 10.1002/adma.201604491

    58. [58]

      Qiao, H.; Huang, Z.; Ren, X.; Liu, S.; Zhang, Y.; Qi, X.; Zhang, H. Adv. Opt. Mater. 2019, 8 (1), 1900765. doi: 10.1002/adom.201900765  doi: 10.1002/adom.201900765

    59. [59]

      Tao, Z.; Zhou, D.; Yin, H.; Cai, B.; Huo, T.; Ma, J.; Di, Z.; Hu, N.; Yang, Z.; Su, Y. Mat. Sci. Semicond. Process 2020, 111, 104989. doi: 10.1016/j.mssp.2020.104989  doi: 10.1016/j.mssp.2020.104989

    60. [60]

      Li, J.; Yuan, S.; Tang, G.; Li, G.; Liu, D.; Li, J.; Hu, X.; Liu, Y.; Li, J.; Yang, Z.; et al. ACS Appl. Mater. Interfaces 2017, 9 (49), 42779. doi: 10.1021/acsami.7b14110  doi: 10.1021/acsami.7b14110

    61. [61]

      Huang, C. Y.; Kang, C. C.; Ma, Y. C.; Chou, Y. C.; Ye, J. H.; Huang, R. T.; Siao, C. Z.; Lin, Y. C.; Chang, Y. H.; Shen, J. L.; et al. Nanotechnology 2018, 29 (44), 445201. doi: 10.1088/1361-6528/aadad8  doi: 10.1088/1361-6528/aadad8

    62. [62]

      Li, Z.; Zheng, Q.; Wang, Z. L.; Li, Z. Research 2020, 2020, 8710686. doi: 10.34133/2020/8710686  doi: 10.34133/2020/8710686

    63. [63]

      Fan, F. -R.; Tian, Z. Q.; Lin Wang, Z. Nano Energy 2012, 1 (2), 328. doi: 10.1016/j.nanoen.2012.01.004  doi: 10.1016/j.nanoen.2012.01.004

    64. [64]

      Chang, J.; Meng, H.; Li, C.; Gao, J.; Chen, S.; Hu, Q.; Li, H.; Feng, L. Adv. Mater. Technol. 2020, 5 (5), 1901087. doi: 10.1002/admt.201901087  doi: 10.1002/admt.201901087

    65. [65]

      Sun, C. H.; Shi, Q. F.; Hasan, D.; Yazici, M. S.; Zhu, M. L.; Ma, Y. M.; Dong, B. W.; Liu, Y. F.; Lee, C. Nano Energy 2019, 58, 612. doi: 10.1016/j.nanoen.2019.01.096  doi: 10.1016/j.nanoen.2019.01.096

    66. [66]

      Jiang, C.; Li, X.; Yao, Y.; Lan, L.; Shao, Y.; Zhao, F.; Ying, Y.; Ping, J. Nano Energy 2019, 66, 104121. doi: 10.1016/j.nanoen.2019.104121  doi: 10.1016/j.nanoen.2019.104121

    67. [67]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321 (5887), 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    68. [68]

      Stanford, M. G.; Li, J. T.; Chyan, Y.; Wang, Z.; Wang, W.; Tour, J. M. ACS Nano 2019, 13 (6), 7166. doi: 10.1021/acsnano.9b02596  doi: 10.1021/acsnano.9b02596

    69. [69]

      Parandeh, S.; Kharaziha, M.; Karimzadeh, F. Nano Energy 2019, 59, 412. doi: 10.1016/j.nanoen.2019.02.058  doi: 10.1016/j.nanoen.2019.02.058

    70. [70]

      Guo, H.; Li, T.; Cao, X.; Xiong, J.; Jie, Y.; Willander, M.; Cao, X.; Wang, N.; Wang, Z. L. ACS Nano 2017, 11 (1), 856. doi: 10.1021/acsnano.6b07389  doi: 10.1021/acsnano.6b07389

    71. [71]

      Chu, H.; Jang, H.; Lee, Y.; Chae, Y.; Ahn, J. H. Nano Energy 2016, 27, 298. doi: 10.1016/j.nanoen.2016.07.009  doi: 10.1016/j.nanoen.2016.07.009

    72. [72]

      Lee, Y.; Kim, J.; Jang, B.; Kim, S.; Sharma, B. K.; Kim, J. H.; Ahn, J. H. Nano Energy 2019, 62, 259. doi: 10.1016/j.nanoen.2019.05.039  doi: 10.1016/j.nanoen.2019.05.039

    73. [73]

      Zhou, K. K.; Zhao, Y.; Sun, X. P.; Yuan, Z. Q.; Zheng, G. Q.; Dai, K.; Mi, L. W.; Pan, C. F.; Liu, C. T.; Shen, C. Y. Nano Energy 2020, 70, 104546. doi: 10.1016/j.nanoen.2020.104546  doi: 10.1016/j.nanoen.2020.104546

    74. [74]

      Zhang, Z.; Li, X.; Yin, J.; Xu, Y.; Fei, W.; Xue, M.; Wang, Q.; Zhou, J.; Guo, W. Nat. Nanotechnol. 2018, 13 (12), 1109. doi: 10.1038/s41565-018-0228-6  doi: 10.1038/s41565-018-0228-6

    75. [75]

      Yin, J.; Zhou, J.; Fang, S.; Guo, W. Joule 2020, 4 (9), 1852. doi: 10.1016/j.joule.2020.07.015  doi: 10.1016/j.joule.2020.07.015

    76. [76]

      Zhong, H.; Xia, J.; Wang, F.; Chen, H.; Wu, H.; Lin, S. Adv. Funct. Mater. 2017, 27 (5), 1604226. doi: 10.1002/adfm.201604226  doi: 10.1002/adfm.201604226

    77. [77]

      Yu, X.; Yin, H.; Li, H.; Zhao, H.; Li, C.; Zhu, M. J. Mater. Chem. C 2018, 6 (3), 630. doi: 10.1039/c7tc05224c  doi: 10.1039/c7tc05224c

    78. [78]

      Roy, K.; Ghosh, S. K.; Sultana, A.; Garain, S.; Xie, M. Y.; Bowen, C. R.; Henkel, K.; Schmeisser, D.; Mandal, D. ACS Appl. Nano Mater. 2019, 2 (4), 2013. doi: 10.1021/acsanm.9b00033  doi: 10.1021/acsanm.9b00033

    79. [79]

      Sahatiya, P.; Shinde, A.; Badhulika, S. Nanotechnology 2018, 29 (32), 325205. doi: 10.1088/1361-6528/aac65b  doi: 10.1088/1361-6528/aac65b

  • 加载中
    1. [1]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    4. [4]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    10. [10]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    17. [17]

      Meirong Cui Mo Xie Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(19)
  • Abstract views(1348)
  • HTML views(358)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return