Citation: Xiaoting Liu, Jincan Zhang, Heng Chen, Zhongfan Liu. Synthesis of Superclean Graphene[J]. Acta Physico-Chimica Sinica, ;2022, 38(1): 201204. doi: 10.3866/PKU.WHXB202012047 shu

Synthesis of Superclean Graphene

  • Corresponding author: Zhongfan Liu, zfliu@pku.edu.cn
  • Received Date: 17 December 2020
    Revised Date: 4 January 2021
    Accepted Date: 5 January 2021
    Available Online: 12 January 2021

    Fund Project: the National Key Basic Research Program of China 2016YFA0200103the National Key Basic Research Program of China 2018YFA0703502the National Natural Science Foundation of China 51520105003the National Natural Science Foundation of China 52072042Beijing National Laboratory for Molecular Sciences BNLMS-CXTD-202001Beijing Municipal Science and Technology Planning Project Z18110300480001Beijing Municipal Science and Technology Planning Project Z18110300480002

  • Graphene has attracted enormous interest in both academic and industrial fields, owing to its unique, extraordinary properties and significant potential applications. Various methods have been developed to synthesize high-quality graphene, among which chemical vapor deposition (CVD) has emerged as the most encouraging for scalable graphene film production with promising quality, controllability, and uniformity. However, a gap still exists between ideal graphene, having remarkable properties, and the currently available CVD-derived graphene films. To close this gap, numerous studies in the past decade have been devoted to decreasing defect density, grain boundaries, and wrinkles, and increasing the controllability of layer thickness and doping of graphene. Significant recent advances in this regard were the discovery of the inevitable contamination of graphene surface during high-temperature CVD growth and the synthesis of superclean graphene, representing a new growth frontier in CVD graphene research. Surface contamination of graphene is a major hurdle in probing its intrinsic properties, and strongly hinders its applications, for instance, in electrical and photonic devices. In this review, we aim to provide comprehensive knowledge on the inevitable contamination of CVD graphene and current synthesis strategies for preparing superclean graphene films, and an outlook for the future mass production of high-quality superclean graphene films. First, we focus on surface contamination formation, e.g. amorphous carbon, during the high-temperature CVD growth process of graphene. After introducing evidence to confirm the origin of surface contamination, the formation mechanism of the amorphous carbon is thoroughly discussed. Meanwhile, the influence of the intrinsic cleanness of graphene on the peeling and transfer quality is also revealed. Second, we summarize the state-of-the-art superclean growth strategies and classify them into direct-growth approaches and post-growth treatment approaches. For the former, modification of the CVD gas-phase reactions, for example, using metal-vapor-assisted methods or cold-wall CVD, is effective in inhibiting the formation of amorphous carbon. For the latter, both chemical and physical cleaning methods are employed to eliminate amorphous carbon without damaging the graphene, e.g. selective etching of as-formed amorphous carbon using CO2, and removal of amorphous carbon from the graphene surface using a lint roller based on interfacial force control. Third, we summarize the outstanding electrical, optical, and thermal properties of superclean graphene. Superclean graphene exhibits high carrier mobility, low contact resistance, high transparency, and high thermal conductivity, further highlighting the significance of superclean graphene growth. Finally, future opportunities and challenges for the industrial production of high-quality superclean graphene are discussed.
  • 加载中
    1. [1]

      Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. doi: 10.1103/RevModPhys.81.109  doi: 10.1103/RevModPhys.81.109

    2. [2]

      Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. Nanotechnol. 2008, 3, 491. doi: 10.1038/nnano.2008.199  doi: 10.1038/nnano.2008.199

    3. [3]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872  doi: 10.1021/nl0731872

    4. [4]

      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K. Science 2008, 320, 1308. doi: 10.1126/science.1156965  doi: 10.1126/science.1156965

    5. [5]

      Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    6. [6]

      Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192. doi: 10.1038/nature11458  doi: 10.1038/nature11458

    7. [7]

      Ferrari, A. C.; Bonaccorso, F.; Fal'ko, V.; Novoselov, K. S.; Roche, S.; Boggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N.; et al. Nanoscale 2015, 7, 4598. doi: 10.1039/c4nr01600a  doi: 10.1039/c4nr01600a

    8. [8]

      Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Science 2015, 347, 1246501. doi: 10.1126/science.1246501  doi: 10.1126/science.1246501

    9. [9]

      Neumaier, D.; Pindl, S.; Lemme, M. C. Nat. Mater. 2019, 18, 525. doi: 10.1038/s41563-019-0359-7  doi: 10.1038/s41563-019-0359-7

    10. [10]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    11. [11]

      Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. Science 2016, 353, 1413. doi: 10.1126/science.aah3398  doi: 10.1126/science.aah3398

    12. [12]

      Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K.; et al. Nat. Nanotechnol. 2008, 3, 563. doi: 10.1038/nnano.2008.215  doi: 10.1038/nnano.2008.215

    13. [13]

      Huang, H.; Chen, W.; Chen, S.; Wee, A. T. S. ACS Nano 2008, 2, 2513. doi: 10.1021/nn800711v  doi: 10.1021/nn800711v

    14. [14]

      Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; et al. Science 2006, 312, 1191. doi: 10.1126/science.1125925  doi: 10.1126/science.1125925

    15. [15]

      Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Science 2009, 324, 1312. doi: 10.1126/science.1171245  doi: 10.1126/science.1171245

    16. [16]

      Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Nature 2009, 457, 706. doi: 10.1038/nature07719  doi: 10.1038/nature07719

    17. [17]

      Lin, L.; Peng, H.; Liu, Z. F. Nat. Mater. 2019, 18, 520. doi: 10.1038/s41563-019-0341-4  doi: 10.1038/s41563-019-0341-4

    18. [18]

      Kong, W.; Kum, H.; Bae, S. -H.; Shim, J.; Kim, H.; Kong, L.; Meng, Y.; Wang, K.; Kim, C.; Kim, J. Nat. Nanotechnol. 2019, 14, 927. doi: 10.1038/s41565-019-0555-2  doi: 10.1038/s41565-019-0555-2

    19. [19]

      Pulizzi, F.; Bubnova, O.; Milana, S.; Schilter, D.; Abergel, D.; Moscatelli, A. Nat. Nanotechnol. 2019, 14, 914. doi: 10.1038/s41565-019-0552-5  doi: 10.1038/s41565-019-0552-5

    20. [20]

      Kim, H.; Song, I.; Park, C.; Son, M.; Hong, M.; Kim, Y.; Kim, J. S.; Shin, H. -J.; Baik, J.; Choi, H. C. ACS Nano 2013, 7, 6575. doi: 10.1021/nn402847w  doi: 10.1021/nn402847w

    21. [21]

      Huang, P.; Ruiz-Vargas, C.; Zande, A.; Whitney, W.; Levendorf, M.; Kevek, J.; Garg, S.; Alden, J.; Hustedt, C.; Zhu, Y.; et al. Nature 2011, 469, 389. doi: 10.1038/nature09718  doi: 10.1038/nature09718

    22. [22]

      Yu, Q.; Jauregui, L.; Wu, W.; Colby, R.; Tian, J.; Su, Z.; Cao, H.; Liu, Z.; Pandey, D.; Wei, D.; et al. Nat. Mater. 2011, 10, 443. doi: 10.1038/nmat3010  doi: 10.1038/nmat3010

    23. [23]

      Ni, G. -X.; Zheng, Y.; Bae, S.; Kim, H. R.; Pachoud, A.; Kim, Y. S.; Tan, C. -L.; Im, D.; Ahn, J. -H.; Hong, B. H.; et al. ACS Nano 2012, 6, 1158. doi: 10.1021/nn203775x  doi: 10.1021/nn203775x

    24. [24]

      Deng, B.; Hou, Y.; Liu, Y.; Khodkov, T.; Goossens, S.; Tang, J.; Wang, Y.; Yan, R.; Du, Y.; Koppens, F. H.; et al. Nano Lett. 2020, 20, 6798. doi: 10.1021/acs.nanolett.0c02785  doi: 10.1021/acs.nanolett.0c02785

    25. [25]

      Lin, L.; Deng, B.; Sun, J. Y.; Peng, H. L.; Liu, Z. F. Chem. Rev. 2018, 118, 9281. doi: 10.1021/acs.chemrev.8b00325  doi: 10.1021/acs.chemrev.8b00325

    26. [26]

      Zhang, J.; Sun, L.; Jia, K.; Liu, X.; Cheng, T.; Peng, H.; Lin, L.; Liu, Z. F. ACS Nano 2020, 14, 10796. doi: 10.1021/acsnano.0c06141  doi: 10.1021/acsnano.0c06141

    27. [27]

      Fang, W.; Hsu, A. L.; Song, Y.; Kong, J. Nanoscale 2015, 7, 20335. doi: 10.1039/c5nr04756k  doi: 10.1039/c5nr04756k

    28. [28]

      Huang, M.; Bakharev, P. V.; Wang, Z. -J.; Biswal, M.; Yang, Z.; Jin, S.; Wang, B.; Park, H. J.; Li, Y.; Qu, D.; et al. Nat. Nanotechnol. 2020, 15, 289. doi: 10.1038/s41565-019-0622-8  doi: 10.1038/s41565-019-0622-8

    29. [29]

      Xue, Y.; Wu, B.; Jiang, L.; Guo, Y.; Huang, L.; Chen, J.; Tan, J.; Geng, D.; Luo, B.; Hu, W.; et al. J. Am. Chem. Soc. 2012, 134, 11060. doi: 10.1021/ja302483t  doi: 10.1021/ja302483t

    30. [30]

      Lin, L.; Li, J.; Yuan, Q.; Li, Q.; Zhang, J.; Sun, L.; Rui, D.; Chen, Z.; Jia, K.; Wang, M.; et al. Sci. Adv. 2019, 5, eaaw8337. doi: 10.1126/sciadv.aaw8337  doi: 10.1126/sciadv.aaw8337

    31. [31]

      Vlassiouk, I. V.; Stehle, Y.; Pudasaini, P. R.; Unocic, R. R.; Rack, P. D.; Baddorf, A. P.; Ivanov, I. N.; Lavrik, N. V.; List, F.; Gupta, N.; et al. Nat. Mater. 2018, 17, 318. doi: 10.1038/s41563-018-0019-3  doi: 10.1038/s41563-018-0019-3

    32. [32]

      Xu, X.; Zhang, Z.; Dong, J.; Yi, D.; Niu, J.; Wu, M.; Lin, L.; Yin, R.; Li, M.; Zhou, J.; et al. Sci. Bull. 2017, 62, 1074. doi: 10.1016/j.scib.2017.07.005  doi: 10.1016/j.scib.2017.07.005

    33. [33]

      Hao, Y.; Bharathi, M. S.; Wang, L.; Liu, Y.; Chen, H.; Nie, S.; Wang, X.; Chou, H.; Tan, C.; Fallahazad, B.; et al. Science 2013, 342, 720. doi: 10.1126/science.1243879  doi: 10.1126/science.1243879

    34. [34]

      Zhou, H.; Yu, W. J.; Liu, L.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. Nat. Commun. 2013, 4, 2096. doi: 10.1038/ncomms3096  doi: 10.1038/ncomms3096

    35. [35]

      Jiang, B.; Sun, J.; Liu, Z. F. Acta Phys. -Chim. Sin. 2021, 37, 2007068.  doi: 10.3866/PKU.WHXB202007068

    36. [36]

      Deng, B.; Pang, Z.; Chen, S.; Li, X.; Meng, C.; Li, J.; Liu, M.; Wu, J.; Qi, Y.; Dang, W.; et al. ACS Nano 2017, 11, 12337. doi: 10.1021/acsnano.7b06196  doi: 10.1021/acsnano.7b06196

    37. [37]

      Li, B. -W.; Luo, D.; Zhu, L.; Zhang, X.; Jin, S.; Huang, M.; Ding, F.; Ruoff, R. S. Adv. Mater. 2018, 30, 1706504. doi: 10.1002/adma.201706504  doi: 10.1002/adma.201706504

    38. [38]

      Yuan, G.; Lin, D.; Wang, Y.; Huang, X.; Chen, W.; Xie, X.; Zong, J.; Yuan, Q. -Q.; Zheng, H.; Wang, D.; et al. Nature 2020, 577, 204. doi: 10.1038/s41586-019-1870-3  doi: 10.1038/s41586-019-1870-3

    39. [39]

      Jia, Y.; Gong, X.; Peng, P.; Wang, Z.; Tian, Z.; Ren, L.; Fu, Y.; Zhang, H. Nano-Micro Lett. 2016, 8, 336. doi: 10.1007/s40820-016-0093-5  doi: 10.1007/s40820-016-0093-5

    40. [40]

      Zhang, Z.; Du, J.; Zhang, D.; Sun, H.; Yin, L.; Ma, L.; Chen, J.; Ma, D.; Cheng, H. -M.; Ren, W. Nat. Commun. 2017, 8, 14560. doi: 10.1038/ncomms14560  doi: 10.1038/ncomms14560

    41. [41]

      Pettes, M. T.; Jo, I.; Yao, Z.; Shi, L. Nano Lett. 2011, 11, 1195. doi: 10.1021/nl104156y  doi: 10.1021/nl104156y

    42. [42]

      Matković, A.; Ralević, U.; Chhikara, M.; Jakovljević, M. M.; Jovanović, D.; Bratina, G.; Gajić, R. J. Appl. Phys. 2013, 114, 093505. doi: 10.1063/1.4819967  doi: 10.1063/1.4819967

    43. [43]

      Li, Z.; Wang, Y.; Kozbial, A.; Shenoy, G.; Zhou, F.; McGinley, R.; Ireland, P.; Morganstein, B.; Kunkel, A.; Surwade, S. P.; et al. Nat. Mater. 2013, 12, 925. doi: 10.1038/nmat3709  doi: 10.1038/nmat3709

    44. [44]

      Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.; Heidelberger, C.; Kong, W.; Choi, S.; et al. Nature 2017, 544, 340. doi: 10.1038/nature22053  doi: 10.1038/nature22053

    45. [45]

      Zheng, L.; Chen, Y.; Li, N.; Zhang, J.; Liu, N.; Liu, J.; Dang, W.; Deng, B.; Li, Y.; Gao, X.; et al. Nat. Commun. 2020, 11, 541. doi: 10.1038/s41467-020-14359-0  doi: 10.1038/s41467-020-14359-0

    46. [46]

      Han, Y.; Fan, X.; Wang, H.; Zhao, F.; Tully, C. G.; Kong, J.; Yao, N.; Yan, N. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 1009. doi: 10.1073/pnas.1919114117  doi: 10.1073/pnas.1919114117

    47. [47]

      Hong, H.; Zhang, J.; Zhang, J.; Qiao, R.; Yao, F.; Cheng, Y.; Wu, C.; Lin, L.; Jia, K.; Zhao, Y.; et al. J. Am. Chem. Soc. 2018, 140, 14952. doi: 10.1021/jacs.8b09353  doi: 10.1021/jacs.8b09353

    48. [48]

      Lin, Y. -C.; Lu, C. -C.; Yeh, C. -H.; Jin, C.; Suenaga, K.; Chiu, P. -W. Nano Lett. 2012, 12, 414. doi: 10.1021/nl203733r  doi: 10.1021/nl203733r

    49. [49]

      Leong, W. S.; Wang, H.; Yeo, J.; Martin-Martinez, F. J.; Zubair, A.; Shen, P. -C.; Mao, Y.; Palacios, T.; Buehler, M. J.; Hong, J. -Y.; et al. Nat. Commun. 2019, 10, 867. doi: 10.1038/s41467-019-08813-x  doi: 10.1038/s41467-019-08813-x

    50. [50]

      Lin, Y. -C.; Jin, C.; Lee, J. -C.; Jen, S. -F.; Suenaga, K.; Chiu, P. -W. ACS Nano 2011, 5, 2362. doi: 10.1021/nn200105j  doi: 10.1021/nn200105j

    51. [51]

      Wang, X.; Dolocan, A.; Chou, H.; Tao, L.; Dick, A.; Akinwande, D.; Wilison, C. G. Chem. Mat. 2017, 29, 2033. doi: 10.1021/acs.chemmater.6b03875  doi: 10.1021/acs.chemmater.6b03875

    52. [52]

      Li, W.; Liang, Y.; Yu, D.; Peng, L.; Pernstich, K. P.; Shen, T.; Walker, A. R. H.; Cheng, G.; Hacker, C. A.; Richter, C. A.; et al. Appl. Phys. Lett. 2013, 102, 183110. doi: 10.1063/1.4804643  doi: 10.1063/1.4804643

    53. [53]

      Moser, J.; Barreiro, A.; Bachtold, A. Appl. Phys. Lett. 2007, 91, 163513. doi: 10.1063/1.2789673  doi: 10.1063/1.2789673

    54. [54]

      Cheng, H. Acta Phys. -Chim. Sin. 2020, 36, 1909042.  doi: 10.3866/PKU.WHXB201909042

    55. [55]

      Schuenemann, C.; Schaeffel, F.; Bachmatiuk, A.; Queitsch, U.; Sparing, M.; Rellinghaus, B.; Lafdi, K.; Schultz, L.; Buechner, B.; Ruemmeli, M. H. ACS Nano 2011, 5, 8928. doi: 10.1021/nn2031066  doi: 10.1021/nn2031066

    56. [56]

      Lin, L.; Zhang, J.; Su, H.; Li, J.; Sun, L.; Wang, Z.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y.; et al. Nat. Commun. 2019, 10, 1912. doi: 10.1038/s41467-019-09565-4  doi: 10.1038/s41467-019-09565-4

    57. [57]

      Zhang, J.; Lin, L.; Sun, L.; Huang, Y.; Koh, A. L.; Dang, W.; Yin, J.; Wang, M.; Tan, C.; Li, T.; et al. Adv. Mater. 2017, 29, 1700639. doi: 10.1002/adma.201700639  doi: 10.1002/adma.201700639

    58. [58]

      Zhang, J.; Jia, K.; Lin, L.; Zhao, W.; Quang, H. T.; Sun, L.; Li, T.; Li, Z.; Liu, X.; Zheng, L.; et al. Angew. Chem. Int. Ed. 2019, 58, 14446. doi: 10.1002/anie.201905672  doi: 10.1002/anie.201905672

    59. [59]

      Su, W.; Kumar, N.; Dai, N.; Roy, D. Chem. Commun. 2016, 52, 8227. doi: 10.1039/C6CC01990K  doi: 10.1039/C6CC01990K

    60. [60]

      Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S. Nano Lett. 2009, 9, 4268. doi: 10.1021/nl902515k  doi: 10.1021/nl902515k

    61. [61]

      Zhang, X.; Li, H.; Ding, F. Adv. Mater. 2014, 26, 5488. doi: 10.1002/adma.201305922  doi: 10.1002/adma.201305922

    62. [62]

      Gao, J.; Yuan, Q.; Hu, H.; Zhao, J.; Ding, F. J. Phys. Chem. C 2011, 115, 17695. doi: 10.1021/jp2051454  doi: 10.1021/jp2051454

    63. [63]

      Zhong, L.; Li, J.; Li, Y.; Lu, H.; Du, H.; Gan, L.; Xu, C.; Chiang, S. W.; Kang, F. J. Phys. Chem. C 2016, 120, 23239. doi: 10.1021/acs.jpcc.6b06750  doi: 10.1021/acs.jpcc.6b06750

    64. [64]

      Zhang, W.; Wu, P.; Li, Z.; Yang, J. J. Phys. Chem. C 2011, 115, 17782. doi: 10.1021/jp2006827  doi: 10.1021/jp2006827

    65. [65]

      Li, Z.; Zhang, W.; Fan, X.; Wu, P.; Zeng, C.; Li, Z.; Zhai, X.; Yang, J.; Hou, J. J. Phys. Chem. C 2012, 116, 10557. doi: 10.1021/jp210814j  doi: 10.1021/jp210814j

    66. [66]

      Kim, H.; Mattevi, C.; Calvo, M. R.; Oberg, J. C.; Artiglia, L.; Agnoli, S.; Hirjibehedin, C. F.; Chhowalla, M.; Saiz, E. ACS Nano 2012, 6, 3614. doi: 10.1021/nn3008965  doi: 10.1021/nn3008965

    67. [67]

      Muñoz, R.; Gómez-Aleixandre, C. Chem. Vapor Depos. 2013, 19, 297. doi: 10.1002/cvde.201300051  doi: 10.1002/cvde.201300051

    68. [68]

      Qing, F.; Jia, R.; Li, B. -W.; Liu, C.; Li, C.; Peng, B.; Deng, L.; Zhang, W.; Li, Y.; Ruoff, R. S.; et al. 2D Mater. 2017, 4, 025089. doi: 10.1088/2053-1583/aa6da5  doi: 10.1088/2053-1583/aa6da5

    69. [69]

      Hu, C.; Li, H.; Zhang, S.; Li, W. J. Mater. Sci. 2016, 51, 3897. doi: 10.1007/s10853-015-9709-2  doi: 10.1007/s10853-015-9709-2

    70. [70]

      Qiu, Z.; Li, P.; Li, Z.; Yang, J. Acc. Chem. Res. 2018, 51, 728. doi: 10.1021/acs.accounts.7b00592  doi: 10.1021/acs.accounts.7b00592

    71. [71]

      Shivayogimath, A.; Mackenzie, D.; Luo, B.; Hansen, O.; Bøggild, P.; Booth, T. J. Sci. Rep. 2017, 7, 6183. doi: 10.1038/s41598-017-06276-y  doi: 10.1038/s41598-017-06276-y

    72. [72]

      Lewis, A. M.; Derby, B.; Kinloch, I. A. ACS Nano 2013, 7, 3104. doi: 10.1021/nn305223y  doi: 10.1021/nn305223y

    73. [73]

      Wang, X.; Yuan, Q.; Li, J.; Ding, F. Nanoscale 2017, 9, 11584. doi: 10.1039/c7nr02743e  doi: 10.1039/c7nr02743e

    74. [74]

      Seah, C. -M.; Chai, S. -P.; Mohamed, A. R. Carbon 2014, 70, 1. doi: 10.1016/j.carbon.2013.12.073  doi: 10.1016/j.carbon.2013.12.073

    75. [75]

      Sun, J.; Gao, T.; Song, X.; Zhao, Y.; Lin, Y.; Wang, H.; Ma, D.; Chen, Y.; Xiang, W.; Wing, J.; et al. J. Am. Chem. Soc. 2014, 136, 6574. doi: 10.1021/ja5022602  doi: 10.1021/ja5022602

    76. [76]

      Zheng, S.; Zhong, G.; Wu, X.; D'Arsie, L.; Robertson, J. RSC Adv. 2017, 7, 33185. doi: 10.1039/c7ra04162d  doi: 10.1039/c7ra04162d

    77. [77]

      Teng, P. -Y.; Lu, C. -C.; Akiyama-Hasegawa, K.; Lin, Y. -C.; Yeh, C. -H.; Suenaga, K.; Chiu, P. -W. Nano Lett. 2012, 12, 1379. doi: 10.1021/nl204024k  doi: 10.1021/nl204024k

    78. [78]

      Jia, K.; Zhang, J.; Lin, L.; Li, Z.; Gao, J.; Sun, L.; Xue, R.; Li, J.; Kang, N.; Luo, Z.; et al. J. Am. Chem. Soc. 2019, 58, 14446. doi: 10.1002/anie.201905672  doi: 10.1002/anie.201905672

    79. [79]

      Jia, K.; Ci, H.; Zhang, J.; Sun, Z.; Ma, Z.; Zhu, Y.; Liu, S.; Liu, J.; Sun, L.; Liu, X.; et al. Angew. Chem. Int. Ed. 2020, 59, 17214. doi: 10.1002/anie.202005406  doi: 10.1002/anie.202005406

    80. [80]

      Sun, L.; Lin, L.; Wang, Z.; Rui, D.; Yu, Z.; Zhang, J.; Li, Y.; Liu, X.; Jia, K.; Wang, K.; et al. Adv. Mater. 2019, 31, 1902978. doi: 10.1002/adma.201902978  doi: 10.1002/adma.201902978

    81. [81]

      Cai, W.; Moore, A. L.; Zhu, Y.; Li, X.; Chen, S.; Shi, L.; Ruoff, R. S. Nano Lett. 2010, 10, 1645. doi: 10.1021/nl9041966  doi: 10.1021/nl9041966

  • 加载中
    1. [1]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    9. [9]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    12. [12]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    13. [13]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    14. [14]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    15. [15]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    16. [16]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    17. [17]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    18. [18]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    19. [19]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    20. [20]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

Metrics
  • PDF Downloads(32)
  • Abstract views(1167)
  • HTML views(355)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return