Citation: Wang Wei, Huang Yu, Wang Zhenyu. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 201107. doi: 10.3866/PKU.WHXB202011073 shu

Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification


  • Author Bio:
    Yu Huang is currently a full professor at Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences. He obtained his Ph.D. degree in 2012 from The Hong Kong Polytechnic University. His research interests include atmospheric VOCs characteristics and environmental effects, indoor air quality, air pollution control research and application

  • Corresponding author: Huang Yu, huangyu@ieecas.cn
  • Received Date: 28 November 2020
    Revised Date: 28 December 2020
    Accepted Date: 28 December 2020
    Available Online: 30 December 2020

    Fund Project: Strategic Priority Research Program of the Chinese Academy of Sciences, China XDA23010000the National Key Research and Development Program of China 2016YFA0203000National Nature Science Foundation of China 41573138Strategic Priority Research Program of the Chinese Academy of Sciences, China XDA23010300National Nature Science Foundation of China 51878644The project was supported by the National Key Research and Development Program of China (2016YFA0203000), National Nature Science Foundation of China (51878644, 41573138), Strategic Priority Research Program of the Chinese Academy of Sciences, China (XDA23010300, XDA23010000)

  • Since the pioneering work on polychlorinated biphenyl photodegradation by Carey in 1976, photocatalytic technology has emerged as a promising and sustainable strategy to overcome the significant challenges posed by energy crisis and environmental pollution. In photocatalysis, sunlight, which is an inexhaustible source of energy, is utilized to generate strongly active species on the surface of the photocatalyst for triggering photo-redox reactions toward the successful removal of environmental pollutants, or for water splitting. The photocatalytic performance is related to the photoabsorption, photoinduced carrier separation, and redox ability of the semiconductor employed as the photocatalyst. Apart from traditional and noble metal oxide semiconductors such as P25, bismuth-based compounds, and Pt-based compounds, 2D g-C3N4 is now identified to have enormous potential in photocatalysis owing to the special π-π conjugated bond in its structure. However, some inherent drawbacks of the conventional g-C3N4, including the insufficient visible-light absorption ability, fast recombination of photogenerated electron-hole pairs, and low quantum efficiency, decrease its photocatalytic activity and limit its application. To date, various strategies such as heterojunction fabrication, special morphology design, and element doping have been adopted to tune the physicochemical properties of g-C3N4. Recent studies have highlighted the potential of defect engineering for boosting the light harvesting, charge separation, and adsorption efficiency of g-C3N4 by tailoring the local surface microstructure, electronic structure, and carrier concentration. In this review, we summarize cutting-edge achievements related to g-C3N4 modified with classified non-external-caused defects (carbon vacancies, nitrogen vacancies, etc.) and external-caused defects (doping and functionalization) for optimizing the photocatalytic performance in water splitting, removal of contaminants in the gas phase and wastewater, nitrogen fixation, etc. The distinctive roles of various defects in the g-C3N4 skeleton in the photocatalytic process are also summarized. Moreover, the practical application of 2D g-C3N4 in air pollution control is highlighted. Finally, the ongoing challenges and perspectives of defective g-C3N4 are presented. The overarching aim of this article is to provide a useful scaffold for future research and application studies on defect-modulated g-C3N4.
  • 加载中
    1. [1]

      Su, J.; Li, G.-D.; Li, X.-H.; Chen, J.-S. Adv. Sci. 2019, 6 (7), 1801702. doi: 10.1002/advs.201801702  doi: 10.1002/advs.201801702

    2. [2]

      Xiong, J.; Di, J.; Xia, J.; Zhu, W.; Li, H. Adv. Funct. Mater. 2018, 28 (39), 1801983. doi: 10.1002/adfm.201801983  doi: 10.1002/adfm.201801983

    3. [3]

      Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z. Energy Environ. Sci. 2012, 5 (5), 6717. doi: 10.1039/C2EE03479D  doi: 10.1039/C2EE03479D

    4. [4]

      Cao, S.; Yu, J. J. Phys. Chem. Lett. 2014, 5 (12), 2101. doi: 10.1021/jz500546b  doi: 10.1021/jz500546b

    5. [5]

      Zhao, Z.; Sun, Y.; Dong, F. Nanoscale 2015, 7 (1), 15. doi: 10.1039/C4NR03008G  doi: 10.1039/C4NR03008G

    6. [6]

      Wang, Y.; Wang, X.; Antonietti, M. Angew. Chem. Int. Ed. 2012, 51 (1), 68. doi: 10.1002/anie.201101182  doi: 10.1002/anie.201101182

    7. [7]

      Wang, Z.; Chen, M.; Huang, Y.; Shi, X.; Zhang, Y.; Huang, T.; Cao, J.; Ho, W.; Lee, S. C. Appl. Catal. B 2018, 239, 352. doi: 10.1016/j.apcatb.2018.08.030  doi: 10.1016/j.apcatb.2018.08.030

    8. [8]

      Tang, J.-Y.; Kong, X. Y.; Ng, B.-J.; Chew, Y.-H.; Mohamed, A. R.; Chai, S.-P. Catal. Sci. Technol. 2019, 9 (9), 2335. doi: 10.1039/C9CY00449A  doi: 10.1039/C9CY00449A

    9. [9]

      Xue, J.; Fujitsuka, M.; Majima, T. Phys. Chem. Chem. Phys. 2019, 21 (5), 2318. doi: 10.1039/C8CP06922K  doi: 10.1039/C8CP06922K

    10. [10]

      Wu, M.; Gong, Y.; Nie, T.; Zhang, J.; Wang, R.; Wang, H.; He, B. J. Mater. Chem. A 2019, 7 (10), 5324. doi: 10.1039/C8TA12076E  doi: 10.1039/C8TA12076E

    11. [11]

      Zhang, D.; Tan, G.; Wang, M.; Li, B.; Dang, M.; Ren, H.; Xia, A. Mater. Res. Bull. 2020, 122, 110685. doi: 10.1016/j.materresbull.2019.110685  doi: 10.1016/j.materresbull.2019.110685

    12. [12]

      Guo, Q.; Zhang, Y.; Zhang, H.-S.; Liu, Y.; Zhao, Y.-J.; Qiu, J.; Dong, G. Adv. Funct. Mater. 2017, 27 (42), 1703711. doi: 10.1002/adfm.201703711  doi: 10.1002/adfm.201703711

    13. [13]

      Ong, W.-J.; Tan, L.-L.; Ng, Y. H.; Yong, S.-T.; Chai, S.-P. Chem. Rev. 2016, 116 (12), 7159. doi: 10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    14. [14]

      Martin, D. J.; Qiu, K.; Shevlin, S. A.; Handoko, A. D.; Chen, X.; Guo, Z.; Tang, J. Angew. Chem. Int. Ed. 2014, 53 (35), 9240. doi: 10.1002/anie.201403375  doi: 10.1002/anie.201403375

    15. [15]

      Frank, S. N.; Bard, A. J. J. Am. Chem. Soc. 1977, 99 (14), 4667. doi: 10.1021/ja00456a024  doi: 10.1021/ja00456a024

    16. [16]

      Huang, Y.; Zhu, D.; Zhang, Q.; Zhang, Y.; Cao, J.-J.; Shen, Z.; Ho, W.; Lee, S. C. Appl. Catal. B 2018, 234, 70. doi: 10.1016/j.apcatb.2018.04.039  doi: 10.1016/j.apcatb.2018.04.039

    17. [17]

      Huang, Y.; Liang, Y.; Rao, Y.; Zhu, D.; Cao, J.-J.; Shen, Z.; Ho, W.; Lee, S. C. Environ. Sci. Technol. 2017, 51 (5), 2924. doi: 10.1021/acs.est.6b04460  doi: 10.1021/acs.est.6b04460

    18. [18]

      Huang, Y.; Wang, W.; Zhang, Q.; Cao, J.-J.; Huang, R.-J.; Ho, W.; Lee, S. C. Sci. Rep. 2016, 6 (1), 23435. doi: 10.1038/srep23435  doi: 10.1038/srep23435

    19. [19]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8 (1), 76. doi: 10.1038/nmat2317  doi: 10.1038/nmat2317

    20. [20]

      Wang, Y.; Rao, L.; Wang, P.; Shi, Z.; Zhang, L. Appl. Catal. B 2020, 262, 118308. doi: 10.1016/j.apcatb.2019.118308  doi: 10.1016/j.apcatb.2019.118308

    21. [21]

      Peng, G.; Wu, J.; Wang, M.; Niklas, J.; Zhou, H.; Liu, C. Nano Lett. 2020, 20 (4), 2879. doi: 10.1021/acs.nanolett.0c00698  doi: 10.1021/acs.nanolett.0c00698

    22. [22]

      Wang, Z.; Huang, Y.; Ho, W.; Cao, J.; Shen, Z.; Lee, S. C. Appl. Catal., B 2016, 199, 123. doi: 10.1016/j.apcatb.2016.06.027  doi: 10.1016/j.apcatb.2016.06.027

    23. [23]

      Wang, Z.; Huang, Y.; Chen, L.; Chen, M.; Cao, J.; Ho, W.; Lee, S. C. J. Mater. Chem. A 2018, 6 (3), 972. doi: 10.1039/C7TA09132J  doi: 10.1039/C7TA09132J

    24. [24]

      Lei, F.; Sun, Y.; Liu, K.; Gao, S.; Liang, L.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2014, 136 (19), 6826. doi: 10.1021/ja501866r  doi: 10.1021/ja501866r

    25. [25]

      Wang, Y.; Shen, S. Acta Phys. -Chim. Sin. 2020, 36 (3), 1905080.[  doi: 10.3866/PKU.WHXB201905080

    26. [26]

      Zhang, C.; Li, Y.; Shuai, D.; Shen, Y.; Xiong, W.; Wang, L. Chemosphere 2019, 214, 462. doi: 10.1016/j.chemosphere.2018.09.137  doi: 10.1016/j.chemosphere.2018.09.137

    27. [27]

      Jourshabani, M.; Lee, B.-K.; Shariatinia, Z. Appl. Catal. B 2020, 276, 119157. doi: 10.1016/j.apcatb.2020.119157  doi: 10.1016/j.apcatb.2020.119157

    28. [28]

      He, D.; Zhang, C.; Zeng, G.; Yang, Y.; Huang, D.; Wang, L.; Wang, H. Appl. Catal. B 2019, 258, 117957. doi: 10.1016/j.apcatb.2019.117957  doi: 10.1016/j.apcatb.2019.117957

    29. [29]

      Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q. J. Mater. Sci. Technol. 2020, 56, 69. doi: 10.1016/j.jmst.2020.03.033  doi: 10.1016/j.jmst.2020.03.033

    30. [30]

      Tang, S.; Zhu, Y.; Li, H.; Xu, H.; Yuan, S. Int. J. Hydrog. Energy 2019, 44 (59), 30935. doi: 10.1016/j.ijhydene.2019.10.020  doi: 10.1016/j.ijhydene.2019.10.020

    31. [31]

      Dong, G.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Science 2016, 351 (6271), 361. doi: 10.1126/science.aad0832  doi: 10.1126/science.aad0832

    32. [32]

      Liao, J.; Cui, W.; Li, J.; Sheng, J.; Wang, H.; Dong, X. A.; Chen, P.; Jiang, G.; Wang, Z.; Dong, F. Chem. Eng. J. 2020, 379, 122282. doi: 10.1016/j.cej.2019.122282  doi: 10.1016/j.cej.2019.122282

    33. [33]

      Cao, J.; Pan, C.; Ding, Y.; Li, W.; Lv, K.; Tang, H. J. Environ. Chem. Eng. 2019, 7 (2), 102984. doi: 10.1016/j.jece.2019.102984  doi: 10.1016/j.jece.2019.102984

    34. [34]

      Cao, J.; Nie, W.; Huang, L.; Ding, Y.; Lv, K.; Tang, H. Appl. Catal. B 2019, 241, 18. doi: 10.1016/j.apcatb.2018.09.007  doi: 10.1016/j.apcatb.2018.09.007

    35. [35]

      Huang, J.; Du, J.; Du, H.; Xu, G.; Yuan, Y. Acta Phys. -Chim. Sin. 2020, 36 (7), 1905056.  doi: 10.3866/PKU.WHXB201905056

    36. [36]

      Mo, R.; Li, J.; Tang, Y.; Li, H.; Zhong, J. Appl. Surf. Sci. 2019, 476, 552. doi: 10.1016/j.apsusc.2019.01.085  doi: 10.1016/j.apsusc.2019.01.085

    37. [37]

      Li, H.; Jin, C.; Wang, Z.; Liu, Y.; Wang, P.; Zheng, Z.; Whangbo, M.-H.; Kou, L.; Li, Y.; Dai, Y.; et al. Chem. Eng. J. 2019, 369, 263. doi: 10.1016/j.cej.2019.03.095  doi: 10.1016/j.cej.2019.03.095

    38. [38]

      Zhang, J.; Huang, Y.; Nie, T.; Wang, R.; He, B.; Han, B.; Wang, H.; Tian, Y.; Gong, Y. Appl. Surf. Sci. 2020, 499, 143942. doi: 10.1016/j.apsusc.2019.143942  doi: 10.1016/j.apsusc.2019.143942

    39. [39]

      Wang, H.; Li, M.; Li, H.; Lu, Q.; Zhang, Y.; Yao, S. Mater. Des. 2019, 162, 210. doi: 10.1016/j.matdes.2018.11.049  doi: 10.1016/j.matdes.2018.11.049

    40. [40]

      Zhou, C.; Zeng, Z.; Zeng, G.; Huang, D.; Xiao, R.; Cheng, M.; Zhang, C.; Xiong, W.; Lai, C.; Yang, Y.; et al. J. Hazard. Mater. 2019, 380, 120815. doi: 10.1016/j.jhazmat.2019.120815  doi: 10.1016/j.jhazmat.2019.120815

    41. [41]

      Zhang, Y.; Gao, J.; Chen, Z. J. Colloid Interface Sci. 2019, 535, 331. doi: 10.1016/j.jcis.2018.10.012  doi: 10.1016/j.jcis.2018.10.012

    42. [42]

      Wu, J.; Li, N.; Fang, H.-B.; Li, X.; Zheng, Y.-Z.; Tao, X. Chem. Eng. J. 2019, 358, 20. doi: 10.1016/j.cej.2018.09.208  doi: 10.1016/j.cej.2018.09.208

    43. [43]

      Zhang, X.; Zhao, R.; Zhang, N.; Su, Y.; Liu, Z.; Gao, R.; Du, C. Appl. Catal. B 2020, 263, 118316. doi: 10.1016/j.apcatb.2019.118316  doi: 10.1016/j.apcatb.2019.118316

    44. [44]

      Xie, Y.; Li, Y.; Huang, Z.; Zhang, J.; Jia, X.; Wang, X.-S.; Ye, J. Appl. Catal. B 2020, 265, 118581. doi: 10.1016/j.apcatb.2019.118581  doi: 10.1016/j.apcatb.2019.118581

    45. [45]

      Ho, W.; Zhang, Z.; Lin, W.; Huang, S.; Zhang, X.; Wang, X.; Huang, Y. ACS Appl. Mater. Interfaces 2015, 7 (9), 5497. doi: 10.1021/am509213x  doi: 10.1021/am509213x

    46. [46]

      Liang, L.; Shi, L.; Wang, F.; Yao, L.; Zhang, Y.; Qi, W. Int. J. Hydrog. Energy 2019, 44 (31), 16315. doi: 10.1016/j.ijhydene.2019.05.001  doi: 10.1016/j.ijhydene.2019.05.001

    47. [47]

      Xue, Y.; Kong, X.; Guo, Y.; Liang, Z.; Cui, H.; Tian, J. J. Materiomics 2020, 6 (1), 128. doi: 10.1016/j.jmat.2020.01.006  doi: 10.1016/j.jmat.2020.01.006

    48. [48]

      Wang, Z.; Huang, Y.; Chen, M.; Shi, X.; Zhang, Y.; Cao, J.; Ho, W.; Lee, S. C. ACS Appl. Mater. Interfaces 2019, 11 (11), 10651. doi: 10.1021/acsami.8b21987  doi: 10.1021/acsami.8b21987

    49. [49]

      Guo, S.; Zhang, H.; Yang, P.; Chen, Y.; Yu, X.; Yu, B.; Zhao, Y.; Yang, Z.; Liu, Z. Catal. Sci. Technol. 2019, 9 (10), 2485. doi: 10.1039/C8CY02509F  doi: 10.1039/C8CY02509F

    50. [50]

      Shan, X.; Ge, G.; Zhao, Z. ChemCatChem 2019, 11 (5), 1534. doi: 10.1002/cctc.201801803  doi: 10.1002/cctc.201801803

    51. [51]

      Yang, Z.; Chu, D.; Jia, G.; Yao, M.; Liu, B. Appl. Surf. Sci. 2020, 504, 144407. doi: 10.1016/j.apsusc.2019.144407  doi: 10.1016/j.apsusc.2019.144407

    52. [52]

      Tian, Y.; Zhou, L.; Zhu, Q.; Lei, J.; Wang, L.; Zhang, J.; Liu, Y. Nanoscale 2019, 11 (43), 20638. doi: 10.1039/C9NR06802C  doi: 10.1039/C9NR06802C

    53. [53]

      Liu, M.; Zhang, D.; Han, J.; Liu, C.; Ding, Y.; Wang, Z.; Wang, A. Chem. Eng. J. 2020, 382, 123017. doi: 10.1016/j.cej.2019.123017  doi: 10.1016/j.cej.2019.123017

    54. [54]

      Liang, X.; Wang, G.; Dong, X.; Wang, G.; Ma, H.; Zhang, X. ACS Appl. Nano Mater. 2019, 2 (1), 517. doi: 10.1021/acsanm.8b02089  doi: 10.1021/acsanm.8b02089

    55. [55]

      Shen, M.; Zhang, L.; Wang, M.; Tian, J.; Jin, X.; Guo, L.; Wang, L.; Shi, J. J. Mater. Chem. A 2019, 7 (4), 1556. doi: 10.1039/C8TA09302D  doi: 10.1039/C8TA09302D

    56. [56]

      Jiang, L.; Li, J.; Wang, K.; Zhang, G.; Li, Y.; Wu, X. Appl. Catal. B 2020, 260, 118181. doi: 10.1016/j.apcatb.2019.118181  doi: 10.1016/j.apcatb.2019.118181

    57. [57]

      Zhang, Y.; Di, J.; Ding, P.; Zhao, J.; Gu, K.; Chen, X.; Yan, C.; Yin, S.; Xia, J.; Li, H. J. Colloid Interface Sci. 2019, 553, 530. doi: 10.1016/j.jcis.2019.06.012  doi: 10.1016/j.jcis.2019.06.012

    58. [58]

      Lei, J.; Chen, B.; Lv, W.; Zhou, L.; Wang, L.; Liu, Y.; Zhang, J. ACS Sustain. Chem. Eng. 2019, 7 (19), 16467. doi: 10.1021/acssuschemeng.9b03678  doi: 10.1021/acssuschemeng.9b03678

    59. [59]

      Wang, X.; Wu, L.; Wang, Z.; Wu, H.; Zhou, X.; Ma, H.; Zhong, H.; Xing, Z.; Cai, G.; Jiang, C.; et al. Sol. RRL 2019, 3 (4), 1800298. doi: 10.1002/solr.201800298  doi: 10.1002/solr.201800298

    60. [60]

      Sun, H.; Wei, K.; Wu, D.; Jiang, Z.; Zhao, H.; Wang, T.; Zhang, Q.; Wong, P. K. Appl. Catal. B 2020, 264, 118480. doi: 10.1016/j.apcatb.2019.118480  doi: 10.1016/j.apcatb.2019.118480

    61. [61]

      Zhang, Y.; Wu, L.; Zhao, X.; Zhao, Y.; Tan, H.; Zhao, X.; Ma, Y.; Zhao, Z.; Song, S.; Wang, Y.; et al. Adv. Energy Mater. 2018, 8 (25), 1801139. doi: 10.1002/aenm.201801139  doi: 10.1002/aenm.201801139

    62. [62]

      Lin, L.; Yu, Z.; Wang, X. Angew. Chem. Int. Ed. 2019, 58 (19), 6164. doi: 10.1002/anie.201809897  doi: 10.1002/anie.201809897

    63. [63]

      Wang, Y.; Rao, L.; Wang, P.; Guo, Y.; Shi, Z.; Guo, X.; Zhang, L. Appl. Surf. Sci. 2020, 505, 144576. doi: 10.1016/j.apsusc.2019.144576  doi: 10.1016/j.apsusc.2019.144576

    64. [64]

      Zhou, M.; Dong, G.; Ma, J.; Dong, F.; Wang, C.; Sun, J. Appl. Catal. B 2020, 273, 119007. doi: 10.1016/j.apcatb.2020.119007  doi: 10.1016/j.apcatb.2020.119007

    65. [65]

      Zhang, H.; Tang, Y.; Liu, Z.; Zhu, Z.; Tang, X.; Wang, Y. Chem. Phys. Lett. 2020, 751, 137467. doi: 10.1016/j.cplett.2020.137467  doi: 10.1016/j.cplett.2020.137467

    66. [66]

      Feng, Q. J. Phys.: Condens. Matter 2020, 32 (44), 445602. doi: 10.1088/1361-648x/aba387  doi: 10.1088/1361-648x/aba387

    67. [67]

      Panigrahi, P.; Kumar, A.; Karton, A.; Ahuja, R.; Hussain, T. Int. J. Hydrog. Energy 2020, 45 (4), 3035. doi: 10.1016/j.ijhydene.2019.11.184  doi: 10.1016/j.ijhydene.2019.11.184

    68. [68]

      Wang, X.; Li, D.; Nan, Z. Sep. Purif. Technol. 2019, 224, 152. doi: 10.1016/j.seppur.2019.04.088  doi: 10.1016/j.seppur.2019.04.088

    69. [69]

      Hu, C.; Wang, M.-S.; Chen, C.-H.; Chen, Y.-R.; Huang, P.-H.; Tung, K.-L. J. Membr. Sci. 2019, 580, 1. doi: 10.1016/j.memsci.2019.03.012  doi: 10.1016/j.memsci.2019.03.012

    70. [70]

      Wang, H.; Bu, Y.; Wu, G.; Zou, X. Dalton Trans. 2019, 48 (31), 11724. doi: 10.1039/C9DT01261C  doi: 10.1039/C9DT01261C

    71. [71]

      Lv, H.; Huang, Y.; Koodali, R. T.; Liu, G.; Zeng, Y.; Meng, Q.; Yuan, M. ACS Appl. Mater. Interfaces 2020, 12 (11), 12656. doi: 10.1021/acsami.9b19057  doi: 10.1021/acsami.9b19057

    72. [72]

      Chu, K.; Li, Q.-Q.; Liu, Y.-P.; Wang, J.; Cheng, Y.-H. Appl. Catal. B 2020, 267, 118693. doi: 10.1016/j.apcatb.2020.118693  doi: 10.1016/j.apcatb.2020.118693

    73. [73]

      Li, Z.; Gu, G.; Hu, S.; Zou, X.; Wu, G. Chin. J. Catal. 2019, 40 (8), 1178. doi: 10.1016/S1872-2067(19)63364-4  doi: 10.1016/S1872-2067(19)63364-4

    74. [74]

      Hu, X.; Zhang, W.; Yong, Y.; Xu, Y.; Wang, X.; Yao, X. Appl. Surf. Sci. 2020, 510, 145413. doi: 10.1016/j.apsusc.2020.145413  doi: 10.1016/j.apsusc.2020.145413

    75. [75]

      Iqbal, W.; Yang, B.; Zhao, X.; Rauf, M.; Mohamed, I. M. A.; Zhang, J.; Mao, Y. Catal. Sci. Technol. 2020, 10 (2), 549. doi: 10.1039/C9CY02111F  doi: 10.1039/C9CY02111F

    76. [76]

      Lin, W.; Lu, K.; Zhou, S.; Wang, J.; Mu, F.; Wang, Y.; Wu, Y.; Kong, Y. Appl. Surf. Sci. 2019, 474, 194. doi: 10.1016/j.apsusc.2018.03.140  doi: 10.1016/j.apsusc.2018.03.140

    77. [77]

      Zhou, P.; Meng, X.; Li, L.; Sun, T. J. Alloys Compd. 2020, 827, 154259. doi: 10.1016/j.jallcom.2020.154259  doi: 10.1016/j.jallcom.2020.154259

    78. [78]

      Wang, K.; Fu, J.; Zheng, Y. Appl. Catal. B 2019, 254, 270. doi: 10.1016/j.apcatb.2019.05.002  doi: 10.1016/j.apcatb.2019.05.002

    79. [79]

      Chen, D.; Liu, J.; Jia, Z.; Fang, J.; Yang, F.; Tang, Y.; Wu, K.; Liu, Z.; Fang, Z. J. Hazard. Mater. 2019, 361, 294. doi: 10.1016/j.jhazmat.2018.09.006  doi: 10.1016/j.jhazmat.2018.09.006

    80. [80]

      Yu, Y.; Wu, S.; Gu, J.; Liu, R.; Wang, Z.; Chen, H.; Jiang, F. J. Hazard. Mater. 2020, 384, 121247. doi: 10.1016/j.jhazmat.2019.121247  doi: 10.1016/j.jhazmat.2019.121247

    81. [81]

      Phang, S. J.; Tan, L.-L. Catal. Sci. Technol. 2019, 9 (21), 5882. doi: 10.1039/C9CY01452G  doi: 10.1039/C9CY01452G

    82. [82]

      Dong, G.; Zhao, L.; Wu, X.; Zhu, M.; Wang, F. Appl. Catal. B 2019, 245, 459. doi: 10.1016/j.apcatb.2019.01.013  doi: 10.1016/j.apcatb.2019.01.013

    83. [83]

      Zhao, L.; Dong, G.; Zhang, L.; Lu, Y.; Huang, Y. ACS Appl. Mater. Interfaces 2019, 11 (10), 10042. doi: 10.1021/acsami.9b00111  doi: 10.1021/acsami.9b00111

    84. [84]

      Liu, J.; Xiong, C.; Jiang, S.; Wu, X.; Song, S. Appl. Catal. B 2019, 249, 282. doi: 10.1016/j.apcatb.2019.03.014  doi: 10.1016/j.apcatb.2019.03.014

    85. [85]

      Li, X.-H.; Chen, W.-L.; He, P.; Wang, T.; Liu, D.; Li, Y.-W.; Li, Y.-G.; Wang, E.-B. Inorg. Chem. Front. 2019, 6 (11), 3315. doi: 10.1039/C9QI01093A  doi: 10.1039/C9QI01093A

    86. [86]

      Vu, N.-N.; Nguyen, C.-C.; Kaliaguine, S.; Do, T.-O. ChemSusChem 2019, 12 (1), 291. doi: 10.1002/cssc.201802394  doi: 10.1002/cssc.201802394

    87. [87]

      Bellamkonda, S.; Shanmugam, R.; Gangavarapu, R. R. J. Mater. Chem. A 2019, 7 (8), 3757. doi: 10.1039/C8TA10580D  doi: 10.1039/C8TA10580D

    88. [88]

      Zhang, Y.; Thomas, A.; Antonietti, M.; Wang, X. J. Am. Chem. Soc. 2009, 131 (1), 50. doi: 10.1021/ja808329f  doi: 10.1021/ja808329f

    89. [89]

      Ge, G.; Zhao, Z. Catal. Sci. Technol. 2019, 9 (2), 266. doi: 10.1039/C8CY02006J  doi: 10.1039/C8CY02006J

    90. [90]

      Li, W.; Guo, Z.; Jiang, L.; Zhong, L.; Li, G.; Zhang, J.; Fan, K.; Gonzalez, S.; Jin, K.; Xu, C.; et al. Chem. Sci. 2020, 11 (10), 2716. doi: 10.1039/C9SC05060D  doi: 10.1039/C9SC05060D

    91. [91]

      Xing, W.; Tu, W.; Ou, M.; Wu, S.; Yin, S.; Wang, H.; Chen, G.; Xu, R. ChemSusChem 2019, 12 (9), 2029. doi: 10.1002/cssc.201801431  doi: 10.1002/cssc.201801431

    92. [92]

      Zhou, P.; Hou, X.; Chao, Y.; Yang, W.; Zhang, W.; Mu, Z.; Lai, J.; Lv, F.; Yang, K.; Liu, Y.; et al. Chem. Sci. 2019, 10 (23), 5898. doi: 10.1039/C9SC00658C  doi: 10.1039/C9SC00658C

    93. [93]

      Zhou, P.; Lv, F.; Li, N.; Zhang, Y.; Mu, Z.; Tang, Y.; Lai, J.; Chao, Y.; Luo, M.; Lin, F.; et al. Nano Energy 2019, 56, 127. doi: 10.1016/j.nanoen.2018.11.033  doi: 10.1016/j.nanoen.2018.11.033

    94. [94]

      Nguyen, C.-C.; Sakar, M.; Vu, M.-H.; Do, T.-O. Ind. Eng. Chem. Res. 2019, 58 (9), 3698. doi: 10.1021/acs.iecr.8b05792  doi: 10.1021/acs.iecr.8b05792

    95. [95]

      Huang, Y.; Wang, P.; Wang, Z.; Rao, Y.; Cao, J.-J.; Pu, S.; Ho, W.; Lee, S. C. Appl. Catal. B 2019, 240, 122. doi: 10.1016/j.apcatb.2018.08.078  doi: 10.1016/j.apcatb.2018.08.078

    96. [96]

      Huang, Y.; Zhang, J.; Wang, Z.; Liu, Y.; Wang, P.; Cao, J.-j.; Ho, W. Sol. RRL 2020, 4 (8), 2000170. doi: 10.1002/solr.202000170  doi: 10.1002/solr.202000170

    97. [97]

      Cao, J.; Huang, Y. Sci. Technol. Rev. 2016, 17 (34), doi: 10.3981/j.issn.1000-7857.2016  doi: 10.3981/j.issn.1000-7857.2016

    98. [98]

      Huang, Y.; Wang, W.; Zhang, Y.; Cao, J.; Huang, R.; Wang, X. Chapter 10—Synthesis and Applications of Nanomaterials with High Photocatalytic Activity on Air Purification. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications; Wang, X., Chen, X., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp. 299-325.

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    3. [3]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    4. [4]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    5. [5]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    6. [6]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    7. [7]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    8. [8]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    9. [9]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    10. [10]

      Jiawei GeXian WangHeyuan TianHao WanWei MaJiangying QuJunjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906

    11. [11]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    12. [12]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    13. [13]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    14. [14]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    15. [15]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    16. [16]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    17. [17]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    18. [18]

      Bingke ZhangDongbo WangJiamu CaoWen HeGang LiuDonghao LiuChenchen ZhaoJingwen PanSihang LiuWeifeng ZhangXuan FangLiancheng ZhaoJinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254

    19. [19]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    20. [20]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

Metrics
  • PDF Downloads(12)
  • Abstract views(541)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return