
Citation: Zheng Tangfei, Jiang Jinxia, Wang Jian, Hu Sufang, Ding Wei, Wei Zidong. Regulation of Electrocatalysts Based on Confinement-Induced Properties[J]. Acta Physico-Chimica Sinica, 2021, 37(11): 201102. doi: 10.3866/PKU.WHXB202011027

基于限域特性的电催化剂调控
English
Regulation of Electrocatalysts Based on Confinement-Induced Properties

-
Key words:
- Confinement
- / Electrocatalyst
- / Electronic structure
- / Coordinate feature
- / Molecular configuration
-
-
[1]
杨晓东, 陈驰, 周志有, 孙世刚.物理化学学报, 2019, 35, 472. doi: 10.3866/PKU.WHXB201806131Yang, X. D.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Acta Phys. -Chim. Sin. 2019, 35, 472. doi: 10.3866/PKU.WHXB201806131
-
[2]
李蒙刚, 夏仲弘, 黄雅荣, 陶璐, 晁玉广, 尹坤, 杨文秀, 杨微微, 于永生, 郭少军.物理化学学报, 2020, 36, 1912049. doi: 10.3866/PKU.WHXB201912049Li, M. G.; Xia, Z. H.; Huang, Y. R.; Tao, L.; Chao, Y. G.; Yin, K.; Yang, W. X.; Yang, W. W.; Yu, Y. S.; Guo, S. J. Acta Phys. -Chim. Sin. 2020, 36, 1912049. doi: 10.3866/PKU.WHXB201912049
-
[3]
Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
-
[4]
Xue, S.; Deng, W.; Yang, F.; Yang, J.; Amiinu, I. S.; He, D.; Tang, H.; Mu, S. ACS Catal. 2018, 8, 75. doi: 10.1021/acscatal.8b00366
-
[5]
Devrim, Y.; Pehlivanoğlu, K. Phys. Status Solidi A 2015, 12, 1256. doi: 10.1002/pssc.201510091
-
[6]
Nelson, D. B.; Nehrir, M. H.; Wang, C. Renew Energy 2006, 31, 1641. doi: 10.1016/j.renene.2005.08.031
-
[7]
Zhang, H.; Chang, X.; Chen, J. G.; Goddard, W. A.; Xu, B.; Cheng, M. J.; Lu, Q. Nat. Commun. 2019, 10, 3340. doi: 10.1038/s41467-019-11292-9
-
[8]
Chu, W.; Zheng, Q.; Prezhdo, O. V.; Zhao, J. J. Am. Chem. Soc. 2020, 142, 3214. doi: 10.1021/jacs.9b13280
-
[9]
Yao, Y.; Wang, H.; Yuan, X. Z.; Li, H.; Shao, M. ACS Energy Lett. 2019, 4, 1336. doi: 10.1021/acsenergylett.9b00699
-
[10]
Liu, Y.; Li, Q.; Guo, X.; Kong, X.; Ke, J.; Chi, M.; Li, Q.; Geng, Z.; Zeng, J. Adv. Mater. 2020, 32, e1907690. doi: 10.1002/adma.201907690
-
[11]
Li, X.; Xie, J.; Rao, H.; Wang, C.; Tang, J. Angew. Chem. Int. Ed. 2020, 59, 19702. doi: 10.1002/anie.202007557
-
[12]
Zhong, R. L.; Sakaki, S. J. Am. Chem. Soc. 2020, 142, 16732. doi: 10.1021/jacs.0c07239
-
[13]
Zhao, T.; Hu, Y.; Gong, M.; Lin, R.; Deng, S.; Lu, Y.; Liu, X.; Chen, Y.; Shen, T.; Hu, Y.; et al. Nano Energy 2020, 74, 104877. doi: 10.1016/j.nanoen.2020.104877
-
[14]
Li, J.; Ghoshal, S.; Bates, M. K.; Miller, T. E.; Davies, V.; Stavitski, E.; Attenkofer, K.; Mukerjee, S.; Ma, Z. F.; Jia, Q.; et al. Angew. Chem. Int. Ed. 2017, 56, 15594. doi: 10.1002/anie.201708484
-
[15]
Zhong, L.; Li, S. ACS Catal. 2020, 10, 4313. doi: 10.1021/acscatal.0c00815
-
[16]
Liu, Z.; Zhao, Z.; Peng, B.; Duan, X.; Huang, Y. J. Am. Chem. Soc. 2020, 142, 17812. doi: 10.1021/jacs.0c07696
-
[17]
McLoughlin, E. A.; Armstrong, K. C.; Waymouth, R. M. ACS Catal. 2020, 10, 11654. doi: 10.1021/acscatal.0c03240
-
[18]
Zhang. J.; Liu, X.; Xing, A.; Liu, J. ACS Appl. Energy Mater. 2018, 1, 2758. doi: 10.1021/acsaem.8b00420
-
[19]
Xiao, Y. Q.; Feng, C.; Fu, J.; Wang, F. Z.; Li, C. L.; Kunzelmann, V. F.; Jiang, C. M.; Nakabayashi, M.; Shibata, N.; Sharp, I. D.; et al. Nat. Catal. 2020, 3, 932. doi: 10.1038/s41929-020-00522-9
-
[20]
Yang, J. Wang, Z.; Jiang, J.; Chen, W.; Liao, F.; Ge, X.; Zhou, X.; Chen, M.; Li, R.; Xue, Z.; et al. Nano Energy 2020, 76, 105059. doi: 10.1016/j.nanoen.2020.105059
-
[21]
Zhou, S.; Yang, X.; Xu, X.; Dou, S. X.; Du, Y.; Zhao, J. J. Am. Chem. Soc. 2020, 142, 308. doi: 10.1021/jacs.9b10588
-
[22]
Wu, Y.; Cai, J.; Xie, Y. Adv. Mater. 2020, 32, e1904346. doi: 10.1002/adma.201904346
-
[23]
Lien, H. T.; Chang, S.; Chen, P.; Wong, D.; Chang, Y.; Lu, Y.; Dong, C.; Wang, C.; Chen, K.; Chen, L. Nat. Commun. 2020, 11, 4233. doi: 10.1038/s41467-020-17975-y
-
[24]
Garner, M.; Li, H.; Chen, Y.; Su, T.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; et al. Nature 2018, 558, 415. doi: 10.1038/s41586-018-0197-9
-
[25]
Eric G; D.; Jean-Marie A.; Amand A. L. J. Catal. 1988, 110, 58. doi: 10.1016/0021-9517(88)90297-7
-
[26]
Jeong, H. M.; Kwon, Y.; Won, J. H.; Lum, Y.; Cheng, M. J.; Kim, K. H.; Head Gordon, M.; Kang, J. K. Adv. Energy Mater. 2020, 10, 1903423. doi: 10.1002/aenm.201903423
-
[27]
Yang, W.; Wang, H.; Liu, R.; Wang, J.; Zhang, C.; Li, C.; Zhong, D.; Lu, T. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202011068
-
[28]
Li, T.; Zhong, W.; Jing, C.; Li, X.; Zhang, T.; Jiang, C.; Chen, W. Environ. Sci. Technol. 2020, 54, 8658. doi: 10.1021/acs.est.9b07473
-
[29]
Jiang, L.; Liu, K.; Hung, S.; Zhou, L.; Qin, R.; Zhang, Q.; Liu, P.; Gu, L.; Chen, H.; Fu, G.; Zheng, N. Nat. Nanotechnol. 2020, 15, 848. doi: 10.1038/s41565-020-0746-x
-
[30]
Pan, X.; Fan, L.; Chen, W.; Ding, J.; Luo, Y.; Bao, X. Nat. Mater. 2007, 6, 507. doi: 10.1038/nmat1916
-
[31]
Pan, X.; Bao, X. Acc. Chem. Res. 2011, 44, 553. doi: 10.1021/ar100160t
-
[32]
Deng, D.; Yu, L.; Chen, X.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun, G.; Bao, X. Angew. Chem. Int. Ed. 2013, 52, 371. doi: 10.1002/anie.201204958
-
[33]
Guan, J.; Pan, X.; Liu, X.; Bao, X. J. Phys. Chem. C. 2009, 113, 21687. doi: 10.1021/jp906092c
-
[34]
Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Bao, X.; et al. Science 2016, 351, 1065. doi: 10.1126/science.aaf1835
-
[35]
包信和.科学通报, 2018, 63, 1266. doi: 10.1360/N972018-00441Bao, X. H. Chin. Sci. Bull. 2018, 63, 1266. doi: 10.1360/N972018-00441
-
[36]
包信和.中国科学(化学), 2012, 42, 355. doi: 10.1360/032012-130Bao, X. H. Sci. China Chem. 2012, 42, 355. doi: 10.1360/032012-130
-
[37]
Fu, Q.; Li, W.; Yao, Y.; Liu, H.; Su, H.; Ma, D.; Gu, X. K.; Chen, L.; Wang, Z.; Zhang, H. Science 2010, 328, 1141. doi: 10.1126/science.1188267
-
[38]
Klein J.; Kumacheva, E. Science 1995, 269, 816. doi: 10.1126/science.269.5225.816
-
[39]
Heuberger, M. Science 2001, 292, 905. doi: 10.1126/science.1058573
-
[40]
Gersappe, D.; Zhu, S.; Liu, Y.; Rafailovich, M. H.; Sokolov, J.; Winesett, D. A.; Ade, H. Nature 1999, 400, 49. doi: 10.1038/21854
-
[41]
Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.; Watanabe, K.; Gomila, G.; Novoselov, K. S.; Geim, A. K.; et al. Science 2018, 360, 1339. doi: 10.1126/science.aat4191
-
[42]
Corma, A.; García, H.; Sastre, G.; Viruela, P. M. J. Phys. Chem. B 1997, 101, 4575. doi: 10.1021/jp9622593
-
[43]
Wang, L.; Zhu, Y.; Wang, J.; Liu, F.; Huang, J.; Meng, X.; Basset, J. M.; Han, Y.; Xiao, F. S. Nat. Commun. 2015, 6, 6957. doi: 10.1038/ncomms7957
-
[44]
Mostafa Moujahid, E.; Besse, J. P.; Leroux, F. J. Mater. Chem. 2002, 12, 3324. doi: 10.1039/B205837P
-
[45]
Yuan, K.; Zhuang, X.; Fu, H.; Brunklaus, G.; Forster, M.; Chen, Y.; Feng, X.; Scherf, U. Angew. Chem. Int. Ed. 2016, 55, 6858. doi: 10.1002/anie.201600850
-
[46]
Xu, S.; Ren, Z.; Liu, X.; Liang, X.; Wang, K.; Chen, J. Energy Stor. Mater. 2018, 15, 291. doi: 10.1016/j.ensm.2018.05.015
-
[47]
Ding, W.; Wei, Z.; Chen, S.; Qi, X.; Yang, T.; Hu, J.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Angew. Chem. Int. Ed. 2013, 52, 11755. doi: 10.1002/anie.201303924
-
[48]
Li, W.; Ding, W.; Wu, G.; Liao, J.; Yao, N.; Qi, X.; Li, L.; Chen, S.; Wei, Z. Chem. Eng. Sci. 2015, 135, 45. doi: 10.1016/j.ces.2015.07.008
-
[49]
Wang, H.; Yang, N.; Li, W.; Ding, W.; Chen, K.; Li, J.; Li, L.; Wang, J.; Jiang, J.; Wei, Z.; et al. ACS Energy Lett. 2018, 3, 1345. doi: 10.1021/acsenergylett.8b00522
-
[50]
Zhu, H.; Xiao, C.; Cheng, H.; Grote, F.; Zhang, X.; Yao, T.; Li, Z.; Wei, S.; Lei, Y.; Xie, Y.; et al. Nat. Commun. 2014, 5, 3960. doi: 10.1038/ncomms4960
-
[51]
Li, Y.; Wang, Y.; Lu, J.; Yang, B.; San, X.; Wu, Z. Nano Energy 2020, 78, 105185. doi: 10.1016/j.nanoen.2020.105185
-
[52]
Zeng, Z.; Su, Y.; Quan, X.; Choi, W.; Zhang, G.; Liu, N.; Kim, B.; Chen, S.; Yu, H.; Zhang, S. Nano Energy 2020, 69, 104409. doi: 10.1016/j.nanoen.2019.104409
-
[53]
Jiang, J.; Ding, W.; Li, W.; Wei, Z. Chem 2019, 6, 431. doi: 10.1016/j.chempr.2019.11.003
-
[54]
Ding, W.; Li, L.; Xiong, K.; Wang, Y.; Li, W.; Nie, Y.; Chen, S.; Qi, X.; Wei, Z. J. Am. Chem. Soc. 2015, 137, 5414. doi: 10.1021/jacs.5b00292
-
[55]
Li, W.; Ding, W.; Jiang, J.; He, Q.; Tao, S.; Wang, W.; Li, J.; Wei, Z. J. Mater. Chem. A 2018, 6, 878. doi: 10.1039/C7TA09435C
-
[56]
Li, J.; Chen, S.; Li, W.; Wu, R.; Ibraheem, S.; Li, J.; Ding, W.; Li, L.; Wei, Z. J. Mater. Chem. A 2018, 6, 15504. doi: 10.1039/C8TA05419C
-
[57]
Li, X.; Guan, B. Y.; Gao, S.; Lou, X. W. Energy Environ. Sci. 2019, 12, 648. doi: 10.1039/C8EE02779J
-
[58]
Najam, T.; Shah, S. S. A.; Ding, W.; Jiang, J.; Jia, L.; Yao, W.; Li, L.; Wei, Z. Angew. Chem. Int. Ed. 2018, 57, 15101. doi: 10.1002/anie.201808383
-
[59]
Wu, G.; Wang, J.; Ding, W.; Nie, Y.; Li, L.; Qi, X.; Chen, S.; Wei, Z. Angew. Chem. Int. Ed. 2016, 55, 1340. doi: 10.1002/anie.201508809
-
[60]
Zhou, Y.; Xie, Z.; Jiang, J.; Wang, J.; Song, X.; He, Q.; Ding, W.; Wei, Z. Nat. Catal. 2020, 3, 454. doi: 10.1038/s41929-020-0446-9
-
[61]
Jiang, J.; Tao, S.; He, Q.; Wang, J.; Zhou, Y.; Xie, Z.; Ding, W.; Wei, Z. J. Mater. Chem. A 2020, 20, 10168. doi: 10.1039/D0TA02528C
-
[1]
-

计量
- PDF下载量: 26
- 文章访问数: 1694
- HTML全文浏览量: 367