Citation: Li Han, Li Fang, Yu Jiaguo, Cao Shaowen. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 201007. doi: 10.3866/PKU.WHXB202010073 shu

2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction

  • Corresponding author: Cao Shaowen, swcao@whut.edu.cn
  • Received Date: 29 October 2020
    Revised Date: 2 December 2020
    Accepted Date: 2 December 2020
    Available Online: 21 December 2020

    Fund Project: the Natural Science Foundation of Hubei Province of China 2017CFA031the Fundamental Research Funds for the Central Universities, China 2020-YB-010the National Key Research and Development Program of China 2018YFB1502001the National Natural Science Foundation of China 51932007the Fundamental Research Funds for the Central Universities, China WUT: 2019-III-196the National Natural Science Foundation of China U1705251the National Natural Science Foundation of China 21773179the National Natural Science Foundation of China 51961135303the National Natural Science Foundation of China 51922081The authors acknowledge the financial support from the National Natural Science Foundation of China (51922081, 21773179, 51961135303, 51932007, U1705251) and the National Key Research and Development Program of China (2018YFB1502001), the Natural Science Foundation of Hubei Province of China (2017CFA031), and the Fundamental Research Funds for the Central Universities, China (WUT: 2019-III-196, 2020-YB-010)

  • Photocatalytic reduction of carbon dioxide into chemical fuels is a promising route to generate renewable energy and curtail the greenhouse effect. Therefore, various photocatalysts have been intensively studied for this purpose. Among them, g-C3N4, a 2D metal-free semiconductor, has been a promising photocatalyst because of its unique properties, such as high chemical stability, suitable electronic structure, and facile preparation. However, pristine g-C3N4 suffers from low solar energy conversion efficiency, owing to its small specific surface area and extensive charge recombination. Therefore, designing g-C3N4 (CN) nanosheets with a large specific surface area is an effective strategy for enhancing the CO2 reduction performance. Unfortunately, the performance of CN nanosheets remains moderate due to the aforementioned charge recombination. To counter this issue, loading a cocatalyst (especially a two-dimensional (2D) one) can enable effective electron migration and suppress electron-hole recombination during photo-irradiation. Herein, CN nanosheets with a large specific surface area (97 m2·g-1) were synthesized by a two-step calcination method, using urea as the precursor. Following this, a 2D/2D FeNi-LDH/g-C3N4 hybrid photocatalyst was obtained by loading a FeNi layered double hydroxide (FeNi-LDH) cocatalyst onto CN nanosheets by a simple hydrothermal method. It was found that the production rate of methanol from photocatalytic CO2 reduction over the FeNi-LDH/g-C3N4 composite is significantly higher than that of pristine CN. Following a series of characterization and analysis, it was demonstrated that the FeNi-LDH/g-C3N4 composite photocatalyst exhibited enhanced photo-absorption, which was ascribed to the excellent light absorption ability of FeNi-LDH. The CO2 adsorption capacity of the FeNi-LDH/g-C3N4 hybrid photocatalyst improved, owing to the large specific surface area and alkaline nature of FeNi-LDH. More importantly, the introduction of FeNi-LDH on the CN nanosheet surface led to the formation of a 2D/2D heterojunction with a large contact area at the interface, which could promote the interfacial separation of charge carriers and effectively inhibit the recombination of the photogenerated electrons and holes. This subsequently resulted in the enhancement of the CO2 photo-reduction activity. In addition, by altering the loading amount of FeNi-LDH for photocatalytic performance evaluation, it was found that the optimal loading amount was 4% (w, mass fraction), with a methanol production rate of 1.64 μmol·h-1·g-1 (approximately 6 times that of pure CN). This study provides an effective strategy to improve the photocatalytic CO2 reduction activity of g-C3N4 by employing 2D layered double hydroxide as the cocatalyst. It also proposes a protocol for the successful design of 2D/2D photocatalysts for solar energy conversion.
  • 加载中
    1. [1]

      Ye, L.; Jin, X.; Ji, X.; Liu, C.; Su, Y.; Xie, H.; Liu, C. Chem. Eng. J. 2016, 291, 39. doi: 10.1016/j.cej.2016.01.032  doi: 10.1016/j.cej.2016.01.032

    2. [2]

      Liu, X.; Ye, L.; Liu, S.; Li, Y.; Ji, X. Sci. Rep. 2016, 6, 38474. doi: 10.1038/srep38474  doi: 10.1038/srep38474

    3. [3]

      Yu, B.; Zhou, Y.; Li, P.; Tu, W.; Li, P.; Tang, L.; Ye, J.; Zou, Z. Nanoscale 2016, 8, 11870. doi: 10.1039/c6nr02547a  doi: 10.1039/c6nr02547a

    4. [4]

      Xia, P.; Zhu, B.; Yu, J.; Cao, S.; Jaroniec, M. J. Mater. Chem. A 2017, 5, 3230. doi: 10.1039/c6ta08310b  doi: 10.1039/c6ta08310b

    5. [5]

      Liu, J.; Niu, Y.; He, X.; Qi, J.; Li, X. J. Nanomater. 2016, 2016, 6012896. doi: 10.1155/2016/6012896  doi: 10.1155/2016/6012896

    6. [6]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    7. [7]

      Yu, J.; Wang, K.; Xiao, W.; Cheng, B. Phys. Chem. Chem. Phys. 2014, 16, 11492. doi: 10.1039/c4cp00133h  doi: 10.1039/c4cp00133h

    8. [8]

      Huang, Y.; Fu, M.; He, T. Acta Phys. -Chim. Sin. 2015, 31, 1145.  doi: 10.3866/PKU.WHXB201504015

    9. [9]

      Wang, X.; He, J.; Li, J.; Lu, G.; Dong, F.; Majima, T.; Zhu, M. Appl. Catal. B 2020, 277, 119230. doi: 10.1016/j.apcatb.2020.119230  doi: 10.1016/j.apcatb.2020.119230

    10. [10]

      Ye, S.; Wang, R.; Wu, M.-Z.; Yuan, Y.-P. Appl. Surf. Sci. 2015, 358, 15. doi: 10.1016/j.apsusc.2015.08.173  doi: 10.1016/j.apsusc.2015.08.173

    11. [11]

      Xiang, Q.; Yu, J.; Jaroniec, M. J. Phys. Chem. C 2011, 115, 7355. doi: 10.1021/jp200953k  doi: 10.1021/jp200953k

    12. [12]

      Li, J.; Chen, G.; Yan, J.; Huang, B.; Cheng, H.; Lou, Z.; Li, B. Appl. Catal. B 2020, 264, 118517. doi: 10.1016/j.apcatb.2019.118517  doi: 10.1016/j.apcatb.2019.118517

    13. [13]

      Ge, L. Mater. Lett. 2011, 65, 2652. doi: 10.1016/j.matlet.2011.05.069  doi: 10.1016/j.matlet.2011.05.069

    14. [14]

      Akple, M. S.; Low, J.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J.; Zhang, J. Appl. Surf. Sci. 2015, 358, 196. doi: 10.1016/j.apsusc.2015.08.250  doi: 10.1016/j.apsusc.2015.08.250

    15. [15]

      Wang, Y.; Li, Y.; Cao, S.; Yu, J. Chin. J. Catal. 2019, 40, 867. doi: 10.1016/s1872-2067(19)63343-7  doi: 10.1016/s1872-2067(19)63343-7

    16. [16]

      Wang, Y.; Shen, S. Acta Phys. -Chim. Sin. 2020, 36, 1905080.  doi: 10.3866/PKU.WHXB201905080

    17. [17]

      Bunekar, N.; Tsai, T.-Y.; Yu, Y.-Z. Mater. Today-Proceed. 2016, 3, 1415. doi: 10.1016/j.matpr.2016.04.023  doi: 10.1016/j.matpr.2016.04.023

    18. [18]

      Huang, D.; Ma, J.; Yu, L.; Wu, D.; Wang, K.; Yang, M.; Papoulis, D.; Komarneni, S. Sep. Purif. Technol. 2015, 156, 789. doi: 10.1016/j.seppur.2015.11.003  doi: 10.1016/j.seppur.2015.11.003

    19. [19]

      Nicotera, I.; Angjeli, K.; Coppola, L.; Enotiadis, A.; Pedicini, R.; Carbone, A.; Gournis, D. Solid State Ionics 2015, 276, 40. doi: 10.1016/j.ssi.2015.03.037  doi: 10.1016/j.ssi.2015.03.037

    20. [20]

      Li, J.; Zhang, N.; Ng, D. H. L. J. Mater. Chem. A 2015, 3, 21106. doi: 10.1039/c5ta04497a  doi: 10.1039/c5ta04497a

    21. [21]

      Qu, T.; Huang, Q.; Zhao, Z.-B. J. Inorg. Mater. 2015, 30, 825. doi: 10.15541/jim20140675  doi: 10.15541/jim20140675

    22. [22]

      Liu, Q.; Fan, C.; Tang, H.; Sun, X.; Yang, J.; Cheng, X. Appl. Surf. Sci. 2015, 358, 188. doi: 10.1016/j.apsusc.2015.09.010  doi: 10.1016/j.apsusc.2015.09.010

    23. [23]

      Yu, W.; Xu, D.; Peng, T. J. Mater. Chem. A 2015, 3, 19936. doi: 10.1039/c5ta05503b  doi: 10.1039/c5ta05503b

    24. [24]

      Yan, J.; Xu, H.; Xu, Y.; Wang, C.; Song, Y.; Xia, J.; Li, H. J. Nanosci. Nanotechnol. 2014, 14, 6809. doi: 10.1166/jnn.2014.8975  doi: 10.1166/jnn.2014.8975

    25. [25]

      Min, Y. L.; Qi, X. F.; Xu, Q. J.; Chen, Y. C. CrystEngComm 2014, 16, 1287. doi: 10.1039/c3ce41964a  doi: 10.1039/c3ce41964a

    26. [26]

      Yu, H.; Xiao, P.; Wang, P.; Yu, J. Appl. Catal. B 2016, 193, 217. doi: 10.1016/j.apcatb.2016.04.028  doi: 10.1016/j.apcatb.2016.04.028

    27. [27]

      Wang, J.; Heil, T.; Zhu, B.; Tung, C.-W.; Yu, J.; Chen, H. M.; Antonietti, M.; Cao, S. ACS Nano 2020, 14, 8584. doi: 10.1021/acsnano.0c02940  doi: 10.1021/acsnano.0c02940

    28. [28]

      Sun, K.; Shen, J.; Liu, Q.; Tang, H.; Zhang, M.; Zulfiqar, S.; Lei, C. Chin. J. Catal. 2020, 41, 72. doi: 10.1016/s1872-2067(19)63430-3  doi: 10.1016/s1872-2067(19)63430-3

    29. [29]

      Qi, K.; Lv, W.; Khan, I.; Liu, S.-Y. Chin. J. Catal. 2020, 41, 114. doi: 10.1016/s1872-2067(19)63459-5  doi: 10.1016/s1872-2067(19)63459-5

    30. [30]

      Xu, M.; Han, L.; Dong, S. ACS Appl. Mater. Interfaces 2013, 5, 12533. doi: 10.1021/am4038307  doi: 10.1021/am4038307

    31. [31]

      He, F.; Zhu, B.; Cheng, B.; Yu, J.; Ho, W.; Macyk, W. Appl. Catal. B 2020, 272, 119006. doi: 10.1016/j.apcatb.2020.119006  doi: 10.1016/j.apcatb.2020.119006

    32. [32]

      Yin, L.; Yuan, Y. P.; Cao, S. W.; Zhang, Z.; Xue, C. RSC Adv. 2014, 4, 6127. doi: 10.1039/c3ra46362a  doi: 10.1039/c3ra46362a

    33. [33]

      Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Appl. Catal. B 2015, 176, 44. doi: 10.1016/j.apcatb.2015.03.045  doi: 10.1016/j.apcatb.2015.03.045

    34. [34]

      Luo, J.; Lin, Z.; Zhao, Y.; Jiang, S.; Song, S. Chin. J. Catal. 2020, 41, 122. doi: 10.1016/s1872-2067(19)63490-x  doi: 10.1016/s1872-2067(19)63490-x

    35. [35]

      Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. ACS Catal. 2014, 4, 774. doi: 10.1021/cs401208c  doi: 10.1021/cs401208c

    36. [36]

      Li, X.; Wang, B.; Yin, W.; Di, J.; Xia, J.; Zhu, W.; Li, H. Acta Phys. -Chim. Sin. 2020, 36, 1902001.  doi: 10.3866/PKU.WHXB201902001

    37. [37]

      Huang, M.; Yu, J.; Hu, Q.; Su, W.; Fan, M.; Li, B.; Dong, L. Appl. Surf. Sci. 2016, 389, 1084. doi: 10.1016/j.apsusc.2016.07.180  doi: 10.1016/j.apsusc.2016.07.180

    38. [38]

      Wang, P.; Sun, S.; Zhang, X.; Ge, X.; Lu, W. RSC Adv. 2016, 6, 33589. doi: 10.1039/c5ra26890g  doi: 10.1039/c5ra26890g

    39. [39]

      Jiang, J.; Yu, J.; Cao, S. J. Colloid Interface Sci. 2015, 461, 56. doi: 10.1016/j.jcis.2015.08.076  doi: 10.1016/j.jcis.2015.08.076

    40. [40]

      Cao, D.; Lu, R.; Yu, A. Acta Phys. -Chim. Sin. 2019, 35, 442.  doi: 10.3866/PKU.WHXB201805163

    41. [41]

      Yamashita, T.; Hayes, P. Appl. Surf. Sci. 2009, 255, 8194. doi: 10.1016/j.apsusc.2009.04.153  doi: 10.1016/j.apsusc.2009.04.153

    42. [42]

      Yan, X.; Xue, C.; Yang, B.; Yang, G. Appl. Surf. Sci. 2017, 394, 248. doi: 10.1016/j.apsusc.2016.10.077  doi: 10.1016/j.apsusc.2016.10.077

    43. [43]

      Ran, J.; Yu, J.; Jaroniec, M. Green Chem. 2011, 13, 2708. doi: 10.1039/c1gc15465f  doi: 10.1039/c1gc15465f

    44. [44]

      Lu, P.; Liu, Q.; Xiong, Y.; Wang, Q.; Lei, Y.; Lu, S.; Lu, L.; Yao, L. Electrochim. Acta 2015, 168, 148. doi: 10.1016/j.electacta.2015.04.003  doi: 10.1016/j.electacta.2015.04.003

    45. [45]

      Liang, Q.; Li, Z.; Yu, X.; Huang, Z.-H.; Kang, F.; Yang, Q.-H. Adv. Mater. 2015, 27, 4634. doi: 10.1002/adma.201502057  doi: 10.1002/adma.201502057

    46. [46]

      Li, H.; Zhu, B.; Cao, S.; Yu, J. Chem. Commun. 2020, 56, 5641. doi: 10.1039/d0cc01338b  doi: 10.1039/d0cc01338b

    47. [47]

      Xu, J.; Wang, G.; Fan, J.; Liu, B.; Cao, S.; Yu, J. J. Power Sources 2015, 274, 77. doi: 10.1016/j.jpowsour.2014.10.033  doi: 10.1016/j.jpowsour.2014.10.033

    48. [48]

      Aquino, C. C.; Richner, G.; Kimling, M. C.; Chen, D.; Puxty, G.; Feron, P. H. M.; Caruso, R. A. J. Phys. Chem. C 2013, 117, 9747. doi: 10.1021/jp312118e  doi: 10.1021/jp312118e

    49. [49]

      Serna-Guerrero, R.; Belmabkhout, Y.; Sayari, A. Chem. Eng. J. 2010, 161, 173. doi: 10.1016/j.cej.2010.04.024  doi: 10.1016/j.cej.2010.04.024

    50. [50]

      Xia, Y.; Tian, Z.; Heil, T.; Meng, A.; Cheng, B.; Cao, S.; Yu, J.; Antonietti, M. Joule 2019, 3, 2792. doi: 10.1016/j.joule.2019.08.011  doi: 10.1016/j.joule.2019.08.011

    51. [51]

      Huang, Q.; Yu, J.; Cao, S.; Cui, C.; Cheng, B. Appl. Surf. Sci. 2015, 358, 350. doi: 10.1016/j.apsusc.2015.07.082  doi: 10.1016/j.apsusc.2015.07.082

    52. [52]

      Wang, L.; Zhu, C.; Yin, L.; Huang, W. Acta Phys. -Chim. Sin. 2020, 36, 1907001.  doi: 10.3866/PKU.WHXB201907001

    53. [53]

      Cao, S.; Jiang, J.; Zhu, B.; Yu, J. Phys. Chem. Chem. Phys. 2016, 18, 19457. doi: 10.1039/c6cp02832b  doi: 10.1039/c6cp02832b

    54. [54]

      Xiao, D.; Dai, K.; Qu, Y.; Yin, Y.; Chen, H. Appl. Surf. Sci. 2015, 358, 181. doi: 10.1016/j.apsusc.2015.09.042  doi: 10.1016/j.apsusc.2015.09.042

    55. [55]

      Thaweesak, S.; Lyu, M.; Peerakiatkhajohn, P.; Butburee, T.; Luo, B.; Chen, H.; Wang, L. Appl. Catal. B 2017, 202, 184. doi: 10.1016/j.apcatb.2016.09.022  doi: 10.1016/j.apcatb.2016.09.022

    56. [56]

      Wang, H.; Jiang, S.; Chen, S.; Li, D.; Zhang, X.; Shao, W.; Sun, X.; Xie, J.; Zhao, Z.; Zhang, Q.; et al. Adv. Mater. 2016, 28, 6940. doi: 10.1002/adma.201601413  doi: 10.1002/adma.201601413

    57. [57]

      Pan, Z.; Liu, M.; Niu, P.; Guo, F.; Fu, X.; Wang, X. Acta Phys. -Chim. Sin. 2020, 36, 1906014.  doi: 10.3866/PKU.WHXB201906014

    58. [58]

      He, F.; Chen, G.; Zhou, Y.; Yu, Y. G.; Li, L.; Hao, S.; Liu, B. J. Mater. Chem. A 2016, 4, 3822. doi: 10.1039/c6ta00497k  doi: 10.1039/c6ta00497k

    59. [59]

      Liu, F.; Yu, J.; Tu, G.; Qu, L.; Xiao, J.; Liu, Y.; Wang, L.; Lei, J.; Zhang, J. Appl. Catal. B 2017, 201, 1. doi: 10.1016/j.apcatb.2016.08.001  doi: 10.1016/j.apcatb.2016.08.001

    60. [60]

      Reli, M.; Huo, P.; Sihor, M.; Ambrozova, N.; Troppova, I.; Matejova, L.; Lang, J.; Svoboda, L.; Kustrowski, P.; Ritz, M.; et al. J. Phys. Chem. A 2016, 120, 8564. doi: 10.1021/acs.jpca.6b07236  doi: 10.1021/acs.jpca.6b07236

    61. [61]

      Chen, Q.; Li, S.; Xu, H.; Wang, G.; Qu, Y.; Zhu, P.; Wang, D. Chin. J. Catal. 2020, 41, 514. doi: 10.1016/s1872-2067(19)63497-2  doi: 10.1016/s1872-2067(19)63497-2

    62. [62]

      Huang, J.; Du, J.; Du, H.; Xu, G.; Yuan, Y. Acta Phys. -Chim. Sin. 2020, 36, 1905056.  doi: 10.3866/PKU.WHXB201905056

    63. [63]

      Mei, F.; Li, Z.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2020, 41, 41. doi: 10.1016/s1872-2067(19)63389-9  doi: 10.1016/s1872-2067(19)63389-9

    64. [64]

      Chuang, C.-C.; Wu, W.-C.; Huang, M.-C.; Huang, I. C.; Lin, J.-L. J. Catal. 1999, 185, 423. doi: 10.1006/jcat.1999.2516  doi: 10.1006/jcat.1999.2516

    65. [65]

      Raskó, J.; Kecskés, T.; Kiss, J. J. Catal. 2004, 226, 183. doi: 10.1016/j.jcat.2004.05.024  doi: 10.1016/j.jcat.2004.05.024

    66. [66]

      Chen, M. T.; Lien, C. F.; Lifen Liao, A.; Lin, J. L. J. Phys. Chem. B 2003, 107, 3837. doi: 10.1021/jp0220884  doi: 10.1021/jp0220884

    67. [67]

      Liao, L. F.; Wu, W. C.; Chen, C. Y.; Lin, J. L. J. Phys. Chem. B 2001, 105, 7678. doi: 10.1021/jp003541j  doi: 10.1021/jp003541j

    68. [68]

      Wu, W.; Bhattacharyya, K.; Gray, K.; Weitz, E. J. Phys. Chem. C 2013, 117, 20643. doi: 10.1021/jp405902a  doi: 10.1021/jp405902a

    69. [69]

      Collins, S. E.; Baltanas, M. A.; Bonivardi, A. L. J. Catal. 2004, 226, 410. doi: 10.1016/j.jcat.2004.06.012  doi: 10.1016/j.jcat.2004.06.012

    70. [70]

      Arana, J.; Cabo, C. G. I.; Dona-Rodriguez, J. M.; Gonzalez-Diaz, O.; Heffera-Melian, J. A.; Perez-Pena, J. Appl. Surf. Sci. 2004, 239, 60. doi: 10.1016/S0169-4332(04)00755-X  doi: 10.1016/S0169-4332(04)00755-X

    71. [71]

      Liu, L.; Zhao, C.; Li, Y. J. Phys. Chem. C 2012, 116, 7904. doi: 10.1021/jp300932b  doi: 10.1021/jp300932b

    72. [72]

      Mao, J.; Ye, L.; Li, K.; Zhang, X.; Liu, J.; Peng, T.; Zan, L. Appl. Catal. B 2014, 144, 855. doi: 10.1016/j.apcatb.2013.08.027  doi: 10.1016/j.apcatb.2013.08.027

    73. [73]

      Li, K.; Peng, T.; Ying, Z.; Song, S.; Zhang, J. Appl. Catal. B 2016, 180, 130. doi: 10.1016/j.apcatb.2015.06.022  doi: 10.1016/j.apcatb.2015.06.022

    74. [74]

      Zhao, H.; Liu, L.; Andino, J. M.; Li, Y. J. Mater. Chem. A 2013, 1, 8209. doi: 10.1039/c3ta11226h  doi: 10.1039/c3ta11226h

    75. [75]

      Busca, G.; Lamotte, J.; Lavalley, J. C.; Lorenzelli, V. J. Am. Chem. Soc. 1987, 109, 5197. doi: 10.1021/ja00251a025  doi: 10.1021/ja00251a025

    76. [76]

      Boccuzzi, F.; Chiorino, A.; Manzoli, M. J. Power Sources 2003, 118, 304. doi: 10.1016/S0378-7753(03)00075-2  doi: 10.1016/S0378-7753(03)00075-2

  • 加载中
    1. [1]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    2. [2]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    3. [3]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    6. [6]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    7. [7]

      Yusong BiRongzhen ZhangKaikai NiuShengsheng YuHui LiuLingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311

    8. [8]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    9. [9]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    10. [10]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    11. [11]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    12. [12]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    13. [13]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    14. [14]

      Sinong WangShanshan JinXue YangYanyan HuangPeng LiuYi TangYuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890

    15. [15]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    16. [16]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    17. [17]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    18. [18]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    19. [19]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    20. [20]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

Metrics
  • PDF Downloads(22)
  • Abstract views(699)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return