Citation: Jia Xiaoqing, Bai Xiaoyu, Ji Zhezhe, Li Yi, Sun Yan, Mi Xueyue, Zhan Sihui. Insight into the Effective Removal of Ciprofloxacin Using a Two-Dimensional Layered NiO/g-C3N4 Composite in Fe-Free Photo-Electro-Fenton System[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 201004. doi: 10.3866/PKU.WHXB202010042 shu

Insight into the Effective Removal of Ciprofloxacin Using a Two-Dimensional Layered NiO/g-C3N4 Composite in Fe-Free Photo-Electro-Fenton System

  • Corresponding author: Li Yi, liyi@tju.edu.cn Zhan Sihui, sihuizhan@nankai.edu.cn
  • Received Date: 19 October 2020
    Revised Date: 18 November 2020
    Accepted Date: 18 November 2020
    Available Online: 23 November 2020

    Fund Project: the Natural Science Foundation of China 21722702the Natural Science Foundation of China 21874099the Tianjin Commission of Science and Technology as Key Technologies R&D Projects 18YFZCSF00730The project was supported by the Natural Science Foundation of China (21722702, 21874099); the Natural Science Foundation of Tianjin City of China (17JCJQJC45000); the Tianjin Commission of Science and Technology as Key Technologies R&D Projects (18YFZCSF00730, 18YFZCSF00770, 18ZXSZSF00230, 19YFZCSF00740, 20YFZCSN01070)the Tianjin Commission of Science and Technology as Key Technologies R&D Projects 18ZXSZSF00230the Tianjin Commission of Science and Technology as Key Technologies R&D Projects 19YFZCSF00740the Tianjin Commission of Science and Technology as Key Technologies R&D Projects 18YFZCSF00770the Natural Science Foundation of Tianjin City of China 17JCJQJC45000the Tianjin Commission of Science and Technology as Key Technologies R&D Projects 20YFZCSN01070

  • Excessive use of ciprofloxacin (CIP) has proven to be a significant threat to the ecological environment. In this work, a novel Fe-free photo-electro-Fenton system was designed for the degradation of CIP in water. The NiO/g-C3N4 composites were synthesized by a simple solvothermal method. The crystalline phases and chemical compositions of the different catalysts were determined via X-ray diffraction (XRD) analysis. Fourier transform infrared (FT-IR) spectroscopy further confirmed the molecular structures of the different composites. The results proved the successful synthesis of NiO/g-C3N4 composites. The morphology of the material was obtained using scanning electron microscopy (SEM), which showed that the structure of the optimal NiO/g-C3N4-60% was two-dimensional and flower-like. The transmission electron microscopy (TEM) analysis further proved that the NiO/g-C3N4-60% possessed a layered structure. Owing to the layered structure, the NiO/g-C3N4-60% boasts of a large specific surface area and abundant active sites, which were beneficial for the transmission of electrons and oxidation of CIP. Furthermore, it was evident from the X-ray photoelectron spectroscopy (XPS) analysis that the Ni2+ and Ni3+ coexisted, and there was low coordination oxygen with defects in the NiO/g-C3N4-60% composite. The electron paramagnetic resonance (EPR) spectrum also proved the existence of oxygen vacancies, which not only facilitated the activation of H2O2, but also promoted the formation of stable mixed valence states of metal ions. UV-vis diffuse reflection spectrum (UV-Vis DRS), photoluminescence (PL), and electrochemical tests showed that NiO/g-C3N4-60% exhibited the strongest light absorption capacity, lowest charge transfer resistance, and fastest charge separation efficiency, which was beneficial for the generation of active species and the rapid degradation of CIP. Therefore, the flower-like NiO/g-C3N4-60% composites exhibited photoelectric synergy in the photo-electro-Fenton process. They not only effectively decomposed the H2O2 produced in the electro-Fenton process into ·OH by the conversion of Ni3+/Ni2+, but also generated photogenerated electrons and holes to promote the production of ·OH, ·O2, and h+ under light irradiation to improve the degradation efficiency of CIP. When the optimal NiO/g-C3N4-60% served as a catalyst in the photo-electro-Fenton system, the degradation efficiency of CIP reached approximately 100% in 90 min and the mineralization efficiency reached 82.0% in 120 min. In addition, compared with the traditional Fenton system (the optimal pH value of which is 2.8–3.5), the novel photo-electro-Fenton system possessed a wider range of pH, with a final CIP degradation efficiency of 78.8% at a pH value of 6. The NiO/g-C3N4-60% also demonstrated excellent structural stability in the photo-electro-Fenton system. After five consecutive cycles, the degradation efficiency was maintained at 96.3%. Based on the results of high-performance liquid chromatography-mass spectrometry (HPLC-MS), two possible pathways for CIP degradation were proposed. This study provides a theoretical basis for the rapid degradation of antibiotics in wastewater.
  • 加载中
    1. [1]

      Karim, A. V.; Shriwastav, A. Chem. Eng. J. 2020, 392, 124853. doi: 10.1016/j.cej.2020.124853  doi: 10.1016/j.cej.2020.124853

    2. [2]

      Jia, Y.; Khanal, S. K.; Shu, H.; Zhang, H.; Chen, G. -H.; Lu, H. Water Res. 2018, 136, 64. doi: 10.1016/j.watres.2018.02.057  doi: 10.1016/j.watres.2018.02.057

    3. [3]

      Zhang, R.; Wang, Y.; Yu, L. -P. J. Hazard. Mater. 2014, 280, 46. doi: 10.1016/j.jhazmat.2014.07.032  doi: 10.1016/j.jhazmat.2014.07.032

    4. [4]

      Zhang, Q. -Q.; Ying, G. -G.; Pan, C. -G.; Liu, Y. -S.; Zhao, J. -L. Environ. Sci. Technol. 2015, 49, 6772. doi: 10.1021/acs.est.5b00729  doi: 10.1021/acs.est.5b00729

    5. [5]

      Brillas, E.; Sirés, I.; Oturan, M. A. Chem. Rev. 2009, 109, 6570. doi: 10.1021/cr900136g  doi: 10.1021/cr900136g

    6. [6]

      Jiang, B.; Niu, Q.; Li, C.; Oturan, N.; Oturan, M. A. Appl. Catal. B: Environ. 2020, 272, 119002. doi: 10.1016/j.apcatb.2020.119002  doi: 10.1016/j.apcatb.2020.119002

    7. [7]

      Seibert, D.; Henrique Borba, F.; Bueno, F.; Inticher, J. J.; Módenes, A. N.; Espinoza-Quiñones, F. R.; Bergamasco, R. Chem. Eng. J. 2019, 372, 471. doi: 10.1016/j.cej.2019.04.162  doi: 10.1016/j.cej.2019.04.162

    8. [8]

      Chen, L.; Zhu, D.; Li, J.; Wang, X.; Zhu, J.; Francis, P. S.; Zheng, Y. Appl. Catal. B: Environ. 2020, 273, 119050. doi: 10.1016/j.apcatb.2020.119050  doi: 10.1016/j.apcatb.2020.119050

    9. [9]

      Zhu, M.; Kim, S.; Mao, L.; Fujitsuka, M.; Zhang, J.; Wang, X.; Majima, T. J. Am. Chem. Soc. 2017, 139, 13234. doi: 10.1021/jacs.7b08416  doi: 10.1021/jacs.7b08416

    10. [10]

      Wang, W.; Niu, Q.; Zeng, G.; Zhang, C.; Huang, D.; Shao, B.; Zhou, C.; Yang, Y.; Liu, Y.; Guo, H.; et al. Appl. Catal. B: Environ. 2020, 273, 119051. doi: 10.1016/j.apcatb.2020.119051  doi: 10.1016/j.apcatb.2020.119051

    11. [11]

      Florent, M.; Giannakoudakis, D. A.; Bandosz, T. J. Appl. Catal. B: Environ. 2020, 272, 119038. doi: 10.1016/j.apcatb.2020.119038  doi: 10.1016/j.apcatb.2020.119038

    12. [12]

      Choo, C. K.; Goh, T. L.; Shahcheraghi, L.; Ngoh, G. C.; Abdullah, A. Z.; Amini Horri, B.; Salamatinia, B. J. Am. Ceram. Soc. 2016, 99, 3874. doi: 10.1111/jace.14411  doi: 10.1111/jace.14411

    13. [13]

      Tzvetkov, G.; Tsvetkov, M.; Spassov, T. Superlattices Microstruct. 2018, 119, 122. doi: 10.1016/j.spmi.2018.04.048  doi: 10.1016/j.spmi.2018.04.048

    14. [14]

      Shi, J. -W.; Zou, Y.; Cheng, L.; Ma, D.; Sun, D.; Mao, S.; Sun, L.; He, C.; Wang, Z. Chem. Eng. J. 2019, 378, 122161. doi: 10.1016/j.cej.2019.122161  doi: 10.1016/j.cej.2019.122161

    15. [15]

      Das, R. K.; Golder, A. K. J. Electroanal. Chem. 2018, 823, 9. doi: 10.1016/j.jelechem.2018.05.029  doi: 10.1016/j.jelechem.2018.05.029

    16. [16]

      He, Y.; Zhang, L.; Teng, B.; Fan, M. Environ. Sci. Technol. 2015, 49, 649. doi: 10.1021/es5046309  doi: 10.1021/es5046309

    17. [17]

      Pham-Huu, C.; Vieira, R.; Louis, B.; Carvalho, A.; Amadou, J.; Dintzer, T.; Ledoux, M. J. J. Catal. 2006, 240, 194. doi: 10.1016/j.jcat.2006.03.017  doi: 10.1016/j.jcat.2006.03.017

    18. [18]

      Hou, Y.; Wen, Z.; Cui, S.; Guo, X.; Chen, J. Adv. Mater. 2013, 25, 6291. doi: 10.1002/adma.201303116  doi: 10.1002/adma.201303116

    19. [19]

      Tang, J. -Y.; Guo, R. -T.; Zhou, W. -G.; Huang, C. -Y.; Pan, W. -G. Appl. Catal. B: Environ. 2018, 237, 802. doi: 10.1016/j.apcatb.2018.06.042  doi: 10.1016/j.apcatb.2018.06.042

    20. [20]

      Ding, J.; Liu, Q.; Zhang, Z.; Liu, X.; Zhao, J.; Cheng, S.; Zong, B.; Dai, W. -L. Appl. Catal. B: Environ. 2015, 165, 511. doi: 10.1016/j.apcatb.2014.10.037  doi: 10.1016/j.apcatb.2014.10.037

    21. [21]

      Selvarajan, S.; Suganthi, A.; Rajarajan, M. Ultrason. Sonochem. 2018, 41, 651. doi: 10.1016/j.ultsonch.2017.10.032  doi: 10.1016/j.ultsonch.2017.10.032

    22. [22]

      Chai, B.; Peng, T.; Mao, J.; Li, K.; Zan, L. Phys. Chem. Chem. Phys. 2012, 14, 16745. doi: 10.1039/C2CP42484C  doi: 10.1039/C2CP42484C

    23. [23]

      Liao, J.; Cui, W.; Li, J.; Sheng, J.; Wang, H.; Dong, X. A.; Chen, P.; Jiang, G.; Wang, Z.; Dong, F. Chem. Eng. J. 2020, 379, 122282. doi: 10.1016/j.cej.2019.122282  doi: 10.1016/j.cej.2019.122282

    24. [24]

      Cao, C.; Wei, L.; Wang, G.; Shen, J. Electrochim. Acta 2017, 231, 609. doi: 10.1016/j.electacta.2017.02.117  doi: 10.1016/j.electacta.2017.02.117

    25. [25]

      Xia, H.; Zhang, Z.; Liu, J.; Deng, Y.; Zhang, D.; Du, P.; Zhang, S.; Lu, X. Appl. Catal. B: Environ. 2019, 259, 118058. doi: 10.1016/j.apcatb.2019.118058  doi: 10.1016/j.apcatb.2019.118058

    26. [26]

      Zhang, B.; Wang, L.; Zhang, Y.; Ding, Y.; Bi, Y. Angew. Chem. Int. Edit. 2018, 57, 2248. doi: 10.1002/anie.201712499  doi: 10.1002/anie.201712499

    27. [27]

      Chatten, R.; Chadwick, A. V.; Rougier, A.; Lindan, P. J. D. J. Phys. Chem. B 2005, 109, 3146. doi: 10.1021/jp045655r  doi: 10.1021/jp045655r

    28. [28]

      Heidari, A.; Younesi, H.; Mehraban, Z.; Heikkinen, H. Int. J. Biol. Macromol. 2013, 61, 251. doi: 10.1016/j.ijbiomac.2013.06.032  doi: 10.1016/j.ijbiomac.2013.06.032

    29. [29]

      Li, L.; Lai, C.; Huang, F.; Cheng, M.; Zeng, G.; Huang, D.; Li, B.; Liu, S.; Zhang, M.; Qin, L.; et al. Water Res. 2019, 160, 238. doi: 10.1016/j.watres.2019.05.081  doi: 10.1016/j.watres.2019.05.081

    30. [30]

      Bai, X.; Li, Y.; Xie, L.; Liu, X.; Zhan, S.; Hu, W. Environ. Sci. Nano 2019, 6, 2850. doi: 10.1039/C9EN00528E  doi: 10.1039/C9EN00528E

    31. [31]

      Zhao, H.; Chen, Y.; Peng, Q.; Wang, Q.; Zhao, G. Appl. Catal. B: Environ. 2017, 203, 127. doi: 10.1016/j.apcatb.2016.09.074  doi: 10.1016/j.apcatb.2016.09.074

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    5. [5]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    6. [6]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    11. [11]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    12. [12]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    13. [13]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    14. [14]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    17. [17]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    18. [18]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

Metrics
  • PDF Downloads(13)
  • Abstract views(712)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return