Citation: Chen Peng, Zhou Ying, Dong Fan. Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 201001. doi: 10.3866/PKU.WHXB202010010 shu

Advances in Regulation Strategies for Electronic Structure and Performance of Two-Dimensional Photocatalytic Materials

  • Corresponding author: Dong Fan, dfctbu@126.com; dongfan@uestc.edu.cn
  • Received Date: 8 October 2020
    Revised Date: 10 November 2020
    Accepted Date: 10 November 2020
    Available Online: 17 November 2020

    Fund Project: the National Natural Science Foundation of China 21777011the National Natural Science Foundation of China 21822601The project was supported by the National Natural Science Foundation of China (21822601, 21777011)

  • Two-dimensional photocatalytic materials have potential applications in the fields of environmental purification and energy conversion owing to their rich surface active sites, unique geometric structures, adjustable electronic structures, and good photocatalytic activities. At present, the main two-dimensional photocatalytic materials include metal oxides, metal composite oxides, metal hydroxides, metal sulfides, bismuth-based materials, and non-metallic photocatalytic materials. The absorption of photons in bulk materials or nanoparticles is often limited by the transmittance and reflection at the grain boundary, while the two-dimensional structure can provide a large specific surface area and abundant surface low-coordination atoms to obtain more UV visible light. In addition, the smaller atomic thickness of two-dimensional photocatalytic materials can shorten the carrier migration distance. Thus, in two-dimensional photocatalytic materials, the carriers generated in the interior migrate to the surface faster than that in the bulk materials, which can reduce the recombination of photogenerated carriers and facilitate the photocatalytic reaction. For the surface redox reaction, the two-dimensional structure can provide more abundant surface-active sites to accelerate the reaction process. Additionally, when the thickness is reduced to the atomic scale, the escape energy of atoms is relatively small, thereby increasing the surface defects, which is helpful for the adsorption and activation of target molecules. Thus, the synthesis methods and performance enhancement strategies of two-dimensional photocatalytic materials have been developed rapidly. The former strategies mainly focus on the adjustment of morphology and geometric structure characteristics, which cannot fully meet the design requirements of efficient and stable photocatalysts. The photocatalytic performance and stability can be improved by surface design to construct abundant active sites and adjust the electronic structure. Research on the reaction mechanism of photocatalysis can help us understand the demand for photocatalytic structure characteristics in different reactions, thereby guiding the design of photocatalysts. In this paper, the advances in surface design and electronic structure regulation strategies of two-dimensional photocatalytic materials are reviewed from three aspects: light absorption; charge separation; and active sites, including element doping, heterojunction design, defect construction, single atom modification, and plasmonic metal loading. The effects on the reaction mechanism for typical air pollutant purification by regulating the electronic structure of two-dimensional photocatalytic materials are summarized. Finally, the problems and challenges associated with the development of two-dimensional photocatalytic materials are analyzed and discussed.
  • 加载中
    1. [1]

      Feng, J.; Zhang, Y.; Song, W.; Deng, W.; Zhu, M.; Fang, Z.; Ye, Y.; Fang, H.; Wu, Z.; Lowther, S.; et al. Environ. Pollut. 2020, 267, 115623. doi: 10.1016/j.envpol.2020.115623  doi: 10.1016/j.envpol.2020.115623

    2. [2]

      An, J.; Zou, J.; Wang, J.; Lin, X.; Zhu, B. Environ. Sci. Pollut. Res. 2015, 22, 19607. doi: 10.1007/s11356-015-5177-0  doi: 10.1007/s11356-015-5177-0

    3. [3]

      Glasius, M.; Goldstein, A. H. Environ. Sci. Technol. 2016, 50, 2754. doi: 10.1021/acs.est.5b05105  doi: 10.1021/acs.est.5b05105

    4. [4]

      Li, J.; Dong, X. A.; Sun, Y.; Jiang, G.; Chu, Y.; Lee, S. C.; Dong, F. Appl. Catal. B-Environ. 2018, 239, 187. doi: 10.1016/j.apcatb.2018.08.019  doi: 10.1016/j.apcatb.2018.08.019

    5. [5]

      Deng, Y.; Li, J.; Li, Y.; Wu, R.; Xie, S. J. Environ. Sci. 2019, 75, 334. doi: 10.1016/j.jes.2018.05.004  doi: 10.1016/j.jes.2018.05.004

    6. [6]

      Muñoz, V.; Casado, C.; Suárez, S.; Sánchez, B.; Marugán, J. Catal. Today 2019, 326, 82. doi: 10.1016/j.cattod.2018.09.001  doi: 10.1016/j.cattod.2018.09.001

    7. [7]

      Mo, J.; Zhang, Y.; Xu, Q.; Lamson, J. J.; Zhao, R. Atmos. Environ. 2009, 43, 2229. doi: 10.1016/j.atmosenv.2009.01.034  doi: 10.1016/j.atmosenv.2009.01.034

    8. [8]

      Wang, S.; Ang, H. M.; Tade, M. O. Environ. Int. 2007, 33, 694. doi: 10.1016/j.envint.2007.02.011  doi: 10.1016/j.envint.2007.02.011

    9. [9]

      Gao, X.; An, L.; Qu, D.; Jiang, W.; Chai, Y.; Sun, S.; Liu, X.; Sun, Z. Sci. Bull. 2019, 64, 918. doi: 10.1016/j.scib.2019.05.009  doi: 10.1016/j.scib.2019.05.009

    10. [10]

      Li, S.; Wang, D.; Wu, X.; Chen, Y. Chin. J. Catal. 2020, 41, 550. doi: 10.1016/S1872-2067(19)63446-7  doi: 10.1016/S1872-2067(19)63446-7

    11. [11]

      Luo, J.; Zhang, S.; Sun, M.; Yang, L.; Luo, S.; Crittenden, J. C. ACS Nano 2019, 13, 9811. doi: 10.1021/acsnano.9b03649  doi: 10.1021/acsnano.9b03649

    12. [12]

      Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N.; et al. Nat. Mater. 2016, 15, 611. doi: 10.1038/nmat4589  doi: 10.1038/nmat4589

    13. [13]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    14. [14]

      Li, Y.; Zhang, D.; Fan, J.; Xiang, Q. Chin. J. Catal. 2021, 42, 627. doi: 10.1016/S1872-2067(20)63684-1  doi: 10.1016/S1872-2067(20)63684-1

    15. [15]

      Cui, W.; Li, J.; Chen, L.; Dong, X. A.; Wang, H.; Sheng, J.; Sun, Y.; Zhou, Y.; Dong, F. Sci. Bull. 2020, 65, 1626. doi: 10.1016/j.scib.2020.05.024  doi: 10.1016/j.scib.2020.05.024

    16. [16]

      Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Chem. Soc. Rev. 2014, 43, 5234. doi: 10.1039/C4CS00126E  doi: 10.1039/C4CS00126E

    17. [17]

      Wu, W. Q.; Feng, H. L.; Rao, H. S.; Xu, Y. F.; Kuang, D. B.; Su, C. Y. Nat. Commun. 2014, 5, 3968. doi: 10.1038/ncomms4968  doi: 10.1038/ncomms4968

    18. [18]

      Luo, B.; Liu, G.; Wang, L. Nanoscale 2016, 8, 6904. doi: 10.1039/C6NR00546B  doi: 10.1039/C6NR00546B

    19. [19]

      Xiong, J.; Di, J.; Xia, J.; Zhu, W.; Li, H. Adv. Funct. Mater. 2018, 28, 1801983. doi: 10.1002/adfm.201801983  doi: 10.1002/adfm.201801983

    20. [20]

      Wang, L.; Zhang, Y.; Chen, L.; Xu, H.; Xiong, Y. Adv. Mater. 2018, 30, 1801955. doi: 10.1002/adma.201801955  doi: 10.1002/adma.201801955

    21. [21]

      Liu, G.; Zhen, C.; Kang, Y.; Wang, L.; Cheng, H. -M. Chem. Soc. Rev. 2018, 47, 6410. doi: 10.1039/C8CS00396C  doi: 10.1039/C8CS00396C

    22. [22]

      Xiang, Q.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2012, 41, 782. doi: 10.1039/C1CS15172J  doi: 10.1039/C1CS15172J

    23. [23]

      Gogotsi, Y. J. Phys. Chem. Lett. 2011, 2, 2509. doi: 10.1021/jz201145a  doi: 10.1021/jz201145a

    24. [24]

      Meng, N.; Ren, J.; Liu, Y.; Huang, Y.; Petit, T.; Zhang, B. Energy Environ. Sci. 2018, 11, 566. doi: 10.1039/C7EE03592F  doi: 10.1039/C7EE03592F

    25. [25]

      Safaei, J.; Mohamed, N. A.; Mohamad Noh, M. F.; Soh, M. F.; Ludin, N. A.; Ibrahim, M. A.; Roslam Wan Isahak, W. N.; Mat Teridi, M. A. J. Mater. Chem. A 2018, 6, 22346. doi: 10.1039/C8TA08001A  doi: 10.1039/C8TA08001A

    26. [26]

      Ding, F.; Yang, D.; Tong, Z.; Nan, Y.; Wang, Y.; Zou, X.; Jiang, Z. Environ. Sci. Nano 2017, 4, 1455. doi: 10.1039/C7EN00255F  doi: 10.1039/C7EN00255F

    27. [27]

      Low, J.; Cao, S.; Yu, J.; Wageh, S. Chem. Commun. 2014, 50, 10768. doi: 10.1039/C4CC02553A  doi: 10.1039/C4CC02553A

    28. [28]

      Li, X.; Dai, Y.; Ma, Y.; Han, S.; Huang, B. Phys. Chem. Chem. Phys. 2014, 16, 4230. doi: 10.1039/C3CP54592J  doi: 10.1039/C3CP54592J

    29. [29]

      Di, J.; Xiong, J.; Li, H.; Liu, Z. Adv. Mater. 2018, 30, 1704548. doi: 10.1002/adma.201704548  doi: 10.1002/adma.201704548

    30. [30]

      Sun, Y.; Gao, S.; Lei, F.; Xie, Y. Chem. Soc. Rev. 2015, 44, 623. doi: 10.1039/C4CS00236A  doi: 10.1039/C4CS00236A

    31. [31]

      Zhang, J.; Chen, Y.; Wang, X. Energy Environ. Sci. 2015, 8, 3092. doi: 10.1039/C5EE01895A  doi: 10.1039/C5EE01895A

    32. [32]

      Zhao, Z.; Sun, Y.; Dong, F. Nanoscale 2015, 7, 15. doi: 10.1039/C4NR03008G  doi: 10.1039/C4NR03008G

    33. [33]

      Chen, P.; Liu, H.; Cui, W.; Lee, S. C.; Wang, L. A.; Dong, F. EcoMat 2020, 2, e12047. doi: 10.1002/eom2.12047  doi: 10.1002/eom2.12047

    34. [34]

      Di, J.; Xiong, J.; Li, H.; Liu, Z. Adv. Mater. 2018, 30, 1704548. doi: 10.1002/adma.201704548  doi: 10.1002/adma.201704548

    35. [35]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    36. [36]

      Xu, M.; Yang, J.; Sun, C.; Liu, L.; Cui, Y.; Liang, B. Chem. Eng. J. 2020, 389, 124402. doi: 10.1016/j.cej.2020.124402  doi: 10.1016/j.cej.2020.124402

    37. [37]

      Li, S.; Sun, J.; Guan, J. Chin. J. Catal. 2021, 42, 511. doi: 10.1016/S1872-2067(20)63693-2  doi: 10.1016/S1872-2067(20)63693-2

    38. [38]

      Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43, 7787. doi: 10.1039/C3CS60425J  doi: 10.1039/C3CS60425J

    39. [39]

      Li, X.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2016, 45, 2603. doi: 10.1039/C5CS00838G  doi: 10.1039/C5CS00838G

    40. [40]

      Dong, X.; Li, J.; Xing, Q.; Zhou, Y.; Huang, H.; Dong, F. Appl. Catal. B-Environ. 2018, 232, 69. doi: 10.1016/j.apcatb.2018.03.054  doi: 10.1016/j.apcatb.2018.03.054

    41. [41]

      Cui, W.; Li, J.; Cen, W.; Sun, Y.; Lee, S. C.; Dong, F. J. Catal. 2017, 352, 351. doi: 10.1016/j.jcat.2017.05.017  doi: 10.1016/j.jcat.2017.05.017

    42. [42]

      Chen, P.; Sun, Y.; Liu, H.; Zhou, Y.; Jiang, G.; Lee, S. C.; Zhang, Y.; Dong, F. Nanoscale 2019, 11, 2366. doi: 10.1039/c8nr09147a  doi: 10.1039/c8nr09147a

    43. [43]

      Li, J.; Dong, X.; Zhang, G.; Cui, W.; Cen, W.; Wu, Z.; Lee, S. C.; Dong, F. J. Mater. Chem. 2019, 7, 3366. doi: 10.1039/C8TA11627J  doi: 10.1039/C8TA11627J

    44. [44]

      Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A. A.; Kim, K. -H. Renew. Sust. Energ. Rev. 2018, 82, 894. doi: 10.1016/j.rser.2017.09.094  doi: 10.1016/j.rser.2017.09.094

    45. [45]

      Xu, Z.; Quintanilla, M.; Vetrone, F.; Govorov, A. O.; Chaker, M.; Ma, D. Adv. Funct. Mater. 2015, 25, 2950. doi: 10.1002/adfm.201500810  doi: 10.1002/adfm.201500810

    46. [46]

      Meng, X.; Liu, L.; Ouyang, S.; Xu, H.; Wang, D.; Zhao, N.; Ye, J. Adv. Mater. 2016, 28, 6781. doi: 10.1002/adma.201600305  doi: 10.1002/adma.201600305

    47. [47]

      Wang, X.; Wang, F.; Sang, Y.; Liu, H. Adv. Energy Mater. 2017, 7, 1700473. doi: 10.1002/aenm.201700473  doi: 10.1002/aenm.201700473

    48. [48]

      Osterloh, F. E. Chem. Soc. Rev. 2013, 42, 2294. doi: 10.1039/C2CS35266D  doi: 10.1039/C2CS35266D

    49. [49]

      Dong, F.; Ho, W.-K.; Lee, S. C.; Wu, Z.; Fu, M.; Zou, S.; Huang, Y. J. Mater. Chem. 2011, 21, 12428. doi: 10.1039/C1JM11840D  doi: 10.1039/C1JM11840D

    50. [50]

      Liu, Y.; Wang, Z.; Huang, B.; Yang, K.; Zhang, X.; Qin, X.; Dai, Y. Appl. Surf. Sci. 2010, 257, 172. doi: 10.1016/j.apsusc.2010.06.058  doi: 10.1016/j.apsusc.2010.06.058

    51. [51]

      Yu, L.; Zhang, X.; Li, G.; Cao, Y.; Shao, Y.; Li, D. Appl. Catal. B: Environ. 2016, 187, 301. doi: 10.1016/j.apcatb.2016.01.045  doi: 10.1016/j.apcatb.2016.01.045

    52. [52]

      Chen, L.; Yin, S. -F.; Luo, S. -L.; Huang, R.; Zhang, Q.; Hong, T.; Au, P. C. T. Ind. Eng. Chem. Res. 2012, 51, 6760. doi: 10.1021/ie300567y  doi: 10.1021/ie300567y

    53. [53]

      Wang, J. -J.; Zhai, X. -Y.; Zhang, G. -Y.; Zhang, J. -B.; Zhao, Y. -F. Solid State Sci. 2020, 105, 106288. doi: 10.1016/j.solidstatesciences.2020.106288  doi: 10.1016/j.solidstatesciences.2020.106288

    54. [54]

      Tian, N.; Huang, H.; Guo, Y.; He, Y.; Zhang, Y. Appl. Surf. Sci. 2014, 322, 249. doi: https://doi.org/10.1016/j.apsusc.2014.10.071

    55. [55]

      Hu, J.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Appl. Catal. B: Environ. 2017, 217, 224. doi: 10.1016/j.apcatb.2017.05.088  doi: 10.1016/j.apcatb.2017.05.088

    56. [56]

      Dong, F.; Xiong, T.; Wang, R.; Sun, Y.; Jiang, Y. Dalton Trans. 2014, 43, 6631. doi:10.1039/C3DT53383B  doi: 10.1039/C3DT53383B

    57. [57]

      Hou, W.; Cronin, S. B. Adv. Funct. Mater. 2013, 23, 1612. doi: 10.1002/adfm.201202148  doi: 10.1002/adfm.201202148

    58. [58]

      Atay, T.; Song, J.-H.; Nurmikko, A. V. Nano Letters 2004, 4, 1627. doi: 10.1021/nl049215n  doi: 10.1021/nl049215n

    59. [59]

      Kolwas, K.; Derkachova, A.; Shopa, M. J. Quant. Spectrosc. Radiat. Trans. 2009, 110, 1490. doi: 10.1016/j.jqsrt.2009.03.020  doi: 10.1016/j.jqsrt.2009.03.020

    60. [60]

      Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. J. Chem. Phys. 2002, 116, 6755. doi: 10.1063/1.1462610  doi: 10.1063/1.1462610

    61. [61]

      Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668. doi: 10.1021/jp026731y  doi: 10.1021/jp026731y

    62. [62]

      Li, Q.; Hao, X.; Guo, X.; Dong, F.; Zhang, Y. Dalton Trans. 2015, 44, 8805. doi: 10.1039/c5dt00844a  doi: 10.1039/c5dt00844a

    63. [63]

      Dong, F.; Li, Q.; Zhou, Y.; Sun, Y.; Zhang, H.; Wu, Z. Dalton Trans. 2014, 43, 9468. doi: 10.1039/c4dt00427b  doi: 10.1039/c4dt00427b

    64. [64]

      Dong, F.; Li, P.; Zhong, J.; Liu, X.; Zhang, Y.; Cen, W.; Huang, H. Appl. Catal. A-Gen. 2016, 510, 161. doi: 10.1016/j.apcata.2015.11.022  doi: 10.1016/j.apcata.2015.11.022

    65. [65]

      Dong, F.; Li, Q.; Sun, Y.; Ho, W. ACS Catal. 2014, 4, 4341. doi: 10.1021/cs501038q  doi: 10.1021/cs501038q

    66. [66]

      Dong, X.; Zhang, W.; Cui, W.; Sun, Y.; Huang, H.; Wu, Z.; Dong, F. Catal. Sci. Technol. 2017, 7, 1324. doi: 10.1039/C6CY02444K  doi: 10.1039/C6CY02444K

    67. [67]

      Guo, L.; Yang, Z.; Marcus, K.; Li, Z.; Luo, B.; Zhou, L.; Wang, X.; Du, Y.; Yang, Y. Energy Environ. Sci. 2018, 11, 106. doi: 10.1039/C7EE02464A  doi: 10.1039/C7EE02464A

    68. [68]

      Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Joule 2018, 2, 1242. doi: 10.1016/j.joule.2018.06.019  doi: 10.1016/j.joule.2018.06.019

    69. [69]

      Zhang, J. Z. J. Phys. Chem. B 2000, 104, 7239. doi: 10.1021/jp000594s  doi: 10.1021/jp000594s

    70. [70]

      Kubacka, A.; Fernández-García, M.; Colón, G. Chem. Rev. 2012, 112, 1555. doi: 10.1021/cr100454n  doi: 10.1021/cr100454n

    71. [71]

      Shao, W.; Wang, H.; Zhang, X. Dalton Trans. 2018, 47, 12642. doi: 10.1039/C8DT02613K  doi: 10.1039/C8DT02613K

    72. [72]

      Wang, Y. Q.; Shen S. H. Acta Phys. -Chim. Sin. 2020, 36, 1905080.  doi: 10.3866/pku.whxb201905080

    73. [73]

      Park, H. S.; Kweon, K. E.; Ye, H.; Paek, E.; Hwang, G. S.; Bard, A. J. J. Phys. Chem. C 2011, 115, 17870. doi: 10.1021/jp204492r  doi: 10.1021/jp204492r

    74. [74]

      Zhao, Z.; Sun, Y.; Dong, F.; Zhang, Y.; Zhao, H. Rsc Adv. 2015, 5, 39549. doi: 10.1039/C5RA03433G  doi: 10.1039/C5RA03433G

    75. [75]

      Chen, P.; Wang, H.; Liu, H.; Ni, Z.; Li, J.; Zhou, Y.; Dong, F. Appl. Catal. B-Environ. 2019, 242, 19. doi:10.1016/j.apcatb.2018.09.078  doi: 10.1016/j.apcatb.2018.09.078

    76. [76]

      Yuan, C.; Cui, W.; Sun, Y.; Wang, J.; Chen, R.; Zhang, J.; Zhang, Y.; Dong, F. Chin. Chem. Lett. 2020, 31, 751. doi: 10.1016/j.cclet.2019.09.033  doi: 10.1016/j.cclet.2019.09.033

    77. [77]

      Lei, F.; Zhang, L.; Sun, Y.; Liang, L.; Liu, K.; Xu, J.; Zhang, Q.; Pan, B.; Luo, Y.; Xie, Y. Angew. Chem. Int. Edit. 2015, 54, 9266. doi: 10.1002/anie.201503410  doi: 10.1002/anie.201503410

    78. [78]

      Mi, Y.; Wen, L.; Wang, Z.; Cao, D.; Xu, R.; Fang, Y.; Zhou, Y.; Lei, Y. Nano Energy 2016, 30, 109. doi: 10.1016/j.nanoen.2016.10.001  doi: 10.1016/j.nanoen.2016.10.001

    79. [79]

      Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. ACS Catal. 2016, 6, 2462. doi: 10.1021/acscatal.5b02922  doi: 10.1021/acscatal.5b02922

    80. [80]

      Li, J.; Cui, W.; Sun, Y.; Chu, Y.; Cen, W.; Dong, F. J. Mater. Chem. A 2017, 5, 9358. doi: 10.1039/C7TA02183F  doi: 10.1039/C7TA02183F

    81. [81]

      Liu, G.; Niu, P.; Sun, C.; Smith, S. C.; Chen, Z.; Lu, G. Q.; Cheng, H. -M. J. Am. Chem. Soc. 2010, 132, 11642. doi: 10.1021/ja103798k  doi: 10.1021/ja103798k

    82. [82]

      Zai, J.; Cao, F.; Liang, N.; Yu, K.; Tian, Y.; Sun, H.; Qian, X. J. Hazard. Mater. 2017, 321, 464. doi: 10.1016/j.jhazmat.2016.09.034  doi: 10.1016/j.jhazmat.2016.09.034

    83. [83]

      Wu, D.; Yue, S.; Wang, W.; An, T.; Li, G.; Yip, H. Y.; Zhao, H.; Wong, P. K. Appl. Catal. B-Environ. 2016, 192, 35. doi: 10.1016/j.apcatb.2016.03.046  doi: 10.1016/j.apcatb.2016.03.046

    84. [84]

      Yang, W.; Zhang, L.; Xie, J.; Zhang, X.; Liu, Q.; Yao, T.; Wei, S.; Zhang, Q.; Xie, Y. Angew. Chem. Int. Edit. 2016, 55, 6716. doi: 10.1002/anie.201602543  doi: 10.1002/anie.201602543

    85. [85]

      Huang, H.; Li, X.; Wang, J.; Dong, F.; Chu, P. K.; Zhang, T.; Zhang, Y. ACS Catal. 2015, 5, 4094. doi: 10.1021/acscatal.5b00444  doi: 10.1021/acscatal.5b00444

    86. [86]

      Cui, W.; Li, J.; Sun, Y.; Wang, H.; Jiang, G.; Lee, S. C.; Dong, F. Appl. Catal. B-Environ. 2018, 237, 938. doi: 10.1016/j.apcatb.2018.06.071  doi: 10.1016/j.apcatb.2018.06.071

    87. [87]

      Li, J.; Zhang, Z.; Cui, W.; Wang, H.; Cen, W.; Johnson, G.; Jiang, G.; Zhang, S.; Dong, F. ACS Catal. 2018, 8, 8376. doi: 10.1021/acscatal.8b02459  doi: 10.1021/acscatal.8b02459

    88. [88]

      Marschall, R. Adv. Funct. Mater. 2014, 24, 2421. doi: 10.1002/adfm.201303214  doi: 10.1002/adfm.201303214

    89. [89]

      An, X.; Wang, Y.; Lin, J.; Shen, J.; Zhang, Z.; Wang, X. Sci. Bull. 2017, 62, 599. doi: 10.1016/j.scib.2017.03.025  doi: 10.1016/j.scib.2017.03.025

    90. [90]

      Zhou, H.; Qu, Y.; Zeid, T.; Duan, X. Energy Environ. Sci. 2012, 5, 6732. doi: 10.1039/C2EE03447F  doi: 10.1039/C2EE03447F

    91. [91]

      Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J. Nanoscale 2013, 5, 8326. doi: 10.1039/C3NR01577G  doi: 10.1039/C3NR01577G

    92. [92]

      He, W.; Wu, X.; Li, Y.; Xiong, J.; Tang, Z.; Wei, Y.; Zhao, Z.; Zhang, X.; Liu, J. Chin. Chem. Lett. 2020, 31, 2774. doi: 10.1016/j.cclet.2020.07.019  doi: 10.1016/j.cclet.2020.07.019

    93. [93]

      Ao, Y.; Wang, K.; Wang, P.; Wang, C.; Hou, J. Appl. Catal. B: Environ. 2016, 194, 157. doi: 10.1016/j.apcatb.2016.04.050  doi: 10.1016/j.apcatb.2016.04.050

    94. [94]

      Tian, N.; Huang, H.; Liu, C.; Dong, F.; Zhang, T.; Du, X.; Yu, S.; Zhang, Y. J. Mater. Chem. A 2015, 3, 17120. doi: 10.1039/C5TA03669K  doi: 10.1039/C5TA03669K

    95. [95]

      Zhang, Y.; Wang, Q.; Liu, D.; Wang, Q.; Li, T.; Wang, Z. Appl. Surf. Sci. 2020, 521, 146434. doi: 10.1016/j.apsusc.2020.146434  doi: 10.1016/j.apsusc.2020.146434

    96. [96]

      Yu, W.; Chen, J.; Shang, T.; Chen, L.; Gu, L.; Peng, T. Appl. Catal. B: Environ. 2017, 219, 693. doi:10.1016/j.apcatb.2017.08.018  doi: 10.1016/j.apcatb.2017.08.018

    97. [97]

      Di, J.; Chen, C.; Yang, S. -Z.; Ji, M.; Yan, C.; Gu, K.; Xia, J.; Li, H.; Li, S.; Liu, Z. J. Mater. Chem. A 2017, 5, 14144. doi: 10.1039/C7TA03624H  doi: 10.1039/C7TA03624H

    98. [98]

      Zhang, N.; Li, X.; Ye, H.; Chen, S.; Ju, H.; Liu, D.; Lin, Y.; Ye, W.; Wang, C.; Xu, Q.; et al. J. Am. Chem. Soc. 2016, 138, 8928. doi: 10.1021/jacs.6b04629  doi: 10.1021/jacs.6b04629

    99. [99]

      Liu, Y.; Xiao, C.; Li, Z.; Xie, Y. Adv. Energy Mater. 2016, 6, 1600436. doi: 10.1002/aenm.201600436  doi: 10.1002/aenm.201600436

    100. [100]

      Wang, H.; He, W.; Dong, X. a.; Wang, H.; Dong, F. Sci. Bull. 2018, 63, 117. doi: 10.1016/j.scib.2017.12.013  doi: 10.1016/j.scib.2017.12.013

    101. [101]

      Huang, J. J.; D, J. M.; Du H. W.; Xu G. S.; Yuan, Y. P.. Acta Phys. -Chim. Sin. 2020, 36, 1905056.  doi: 10.3866/PKU.WHXB201905056

    102. [102]

      Niu, P.; Liu, G.; Cheng, H. -M. J. Phys. Chem. C 2012, 116, 11013. doi: 10.1021/jp301026y  doi: 10.1021/jp301026y

    103. [103]

      Yuan, J.; Liu, X.; Tang, Y.; Zeng, Y.; Wang, L.; Zhang, S.; Cai, T.; Liu, Y.; Luo, S.; Pei, Y.; Liu, C. Appl. Catal. B-Environ. 2018, 237, 24. doi: 10.1016/j.apcatb.2018.05.064  doi: 10.1016/j.apcatb.2018.05.064

    104. [104]

      Liao, J.; Cui, W.; Li, J.; Sheng, J.; Wang, H.; Dong, X. a.; Chen, P.; Jiang, G.; Wang, Z.; Dong, F. Chem. Eng. J. 2020, 379, 122282. doi: 10.1016/j.cej.2019.122282  doi: 10.1016/j.cej.2019.122282

    105. [105]

      Liu, H.; Chen, P.; Yuan, X.; Zhang, Y.; Huang, H.; Wang, L. A.; Dong, F. Chin. J. Catal. 2019, 40, 620. doi: 10.1016/S1872-2067(19)63279-1  doi: 10.1016/S1872-2067(19)63279-1

    106. [106]

      Dong, X. A.; Cui, W.; Wang, H.; Li, J.; Sun, Y.; Wang, H.; Zhang, Y.; Huang, H.; Dong, F. Sci. Bull. 2019, 64, 669. doi: 10.1016/j.scib.2019.04.020  doi: 10.1016/j.scib.2019.04.020

    107. [107]

      Chen, P.; Liu, H.; Sun, Y.; Li, J.; Cui, W.; Wang, L. A.; Zhang, W.; Yuan, X.; Wang, Z.; Zhang, Y.; Dong, F. Appl. Catal. B-Environ. 2020, 264, 118545. doi: 10.1016/j.apcatb.2019.118545  doi: 10.1016/j.apcatb.2019.118545

    108. [108]

      Wang, H.; Zhang, W.; Li, X.; Li, J.; Cen, W.; Li, Q.; Dong, F. Appl. Catal. B-Environ. 2018, 225, 218. doi: 10.1016/j.apcatb.2017.11.079  doi: 10.1016/j.apcatb.2017.11.079

    109. [109]

      Dong, X. A.; Zhang, W.; Sun, Y.; Li, J.; Cen, W.; Cui, Z.; Huang, H.; Dong, F. J. Catal. 2018, 357, 41. doi: 10.1016/j.jcat.2017.10.004  doi: 10.1016/j.jcat.2017.10.004

    110. [110]

      Liao, J.; Li, K.; Ma, H.; Dong, F.; Zeng, X.; Sun, Y. Chin. Chem. Lett. 2020, doi: 10.1016/j.cclet.2020.03.081  doi: 10.1016/j.cclet.2020.03.081

    111. [111]

      Gao, S.; Gu, B.; Jiao, X.; Sun, Y.; Zu, X.; Yang, F.; Zhu, W.; Wang, C.; Feng, Z.; Ye, B.; Xie, Y. J. Am. Chem. Soc. 2017, 139, 3438. doi: 10.1021/jacs.6b11263  doi: 10.1021/jacs.6b11263

    112. [112]

      Zhu, C.; Liu, T.; Qian, F.; Han, T. Y. -J.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Nano Lett. 2016, 16, 3448. doi: 10.1021/acs.nanolett.5b04965  doi: 10.1021/acs.nanolett.5b04965

    113. [113]

      Li, S.; Shi, M.; Yu, J.; Li, S.; Lei, S.; Lin, L.; Wang, J. Chin. Chem. Lett. 2020, doi:10.1016/j.cclet.2020.09.056  doi: 10.1016/j.cclet.2020.09.056

    114. [114]

      Liu, J. ACS Catal. 2017, 7, 34. doi: 10.1021/acscatal.6b01534  doi: 10.1021/acscatal.6b01534

    115. [115]

      Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P. M. Adv. Mater. 2013, 25, 2452. doi: 10.1002/adma.201204453  doi: 10.1002/adma.201204453

    116. [116]

      Niu, P.; Zhang, L.; Liu, G.; Cheng, H. -M. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.201200922  doi: 10.1002/adfm.201200922

    117. [117]

      Ovchinnikov, D.; Allain, A.; Huang, Y. -S.; Dumcenco, D.; Kis, A. ACS Nano 2014, 8, 8174. doi: 10.1021/nn502362b  doi: 10.1021/nn502362b

    118. [118]

      Parzinger, E.; Miller, B.; Blaschke, B.; Garrido, J. A.; Ager, J. W.; Holleitner, A.; Wurstbauer, U. ACS Nano 2015, 9, 11302. doi: 10.1021/acsnano.5b04979  doi: 10.1021/acsnano.5b04979

    119. [119]

      Lei, F.; Sun, Y.; Liu, K.; Gao, S.; Liang, L.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2014, 136, 6826. doi: 10.1021/ja501866r  doi: 10.1021/ja501866r

    120. [120]

      Liu, J.; Wang, D.; Wang, M.; Kong, D.; Zhang, Y.; Chen, J.-F.; Dai, L. Chem. Eng. Technol. 2016, 39, 891. doi: 10.1002/ceat.201500542  doi: 10.1002/ceat.201500542

    121. [121]

      Xie, J.; Zhang, X.; Zhang, H.; Zhang, J.; Li, S.; Wang, R.; Pan, B.; Xie, Y. Adv. Mater. 2017, 29, 1604765. doi: 10.1002/adma.201604765  doi: 10.1002/adma.201604765

    122. [122]

      Li, X.; Bi, W.; Zhang, L.; Tao, S.; Chu, W.; Zhang, Q.; Luo, Y.; Wu, C.; Xie, Y. Adv. Mater. 2016, 28, 2427. doi: 10.1002/adma.201505281  doi: 10.1002/adma.201505281

    123. [123]

      Chen, Z.; Mitchell, S.; Vorobyeva, E.; Leary, R. K.; Hauert, R.; Furnival, T.; Ramasse, Q. M.; Thomas, J. M.; Midgley, P. A.; Dontsova, D.; et al. Adv. Funct. Mater. 2017, 27, 1605785. doi: 10.1002/adfm.201605785  doi: 10.1002/adfm.201605785

    124. [124]

      Liu, G.; Robertson, A. W.; Li, M. M.-J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. -C.; Suenaga, K.; Stamatakis, M.; Warner, J. H.; Tsang, S. C. E. Nat. Chem. 2017, 9, 810. doi: 10.1038/nchem.2740  doi: 10.1038/nchem.2740

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    6. [6]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    11. [11]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    14. [14]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    15. [15]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    16. [16]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    17. [17]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

Metrics
  • PDF Downloads(7)
  • Abstract views(549)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return