Citation: Shu Yajie, Liang Shimin, Xiao Jiayong, Tu Zhiling, Huang Haibao. Phosphate- and Mn-Modified Mesoporous TiO2 for Efficient Catalytic Oxidation of Toluene in VUV-PCO System[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 201000. doi: 10.3866/PKU.WHXB202010001 shu

Phosphate- and Mn-Modified Mesoporous TiO2 for Efficient Catalytic Oxidation of Toluene in VUV-PCO System

  • Corresponding author: Huang Haibao, seabao8@gmail.com
  • Received Date: 1 October 2020
    Revised Date: 26 November 2020
    Accepted Date: 30 November 2020
    Available Online: 4 December 2020

    Fund Project: This work is financially supported by the National Key Research and Development Program of China (2016YFC0204800)the National Key Research and Development Program of China 2016YFC0204800

  • Vacuum ultraviolet irradiation coupled with photocatalytic oxidation (VUV-PCO) is an efficient and promising method for eliminating pollutants at room temperature; it involves three processes: vacuum ultraviolet (VUV) photolysis, photocatalytic oxidation (PCO), and ozone catalytic oxidation. Herein, toluene was chosen as the representative volatile organic compound (VOC), which is one of the most important precursors to form fine particulate matter and photochemical smog, because of its high toxicity and extensive existence in industries. All experiments were performed in a fixed-bed continuous-flow reactor that contained units for VUV photolysis and PCO. Mesoporous P-Mn-TiO2 was prepared by one-step hydrolysis and used as a catalyst for the oxidation of gaseous toluene under VUV irradiation through the VUV-PCO process. The as-prepared P-Mn-TiO2 samples were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), ultraviolet-visible light (UV-Vis) spectroscopy, and X-ray diffraction (XRD) analysis to determine the physicochemical properties of the catalysts and to determine the mechanisms of Mn doping and phosphoric acid modification and the effects of these processes on photocatalytic activity, ozone catalytic activity, and adsorption performance. The results indicated that the synergistic effect of phosphoric acid modification and Mn doping can improve the ozone catalytic activity and photocatalytic performance by increasing the number of oxygen active sites, completely eliminating the outlet ozone, and simultaneously promoting the efficient degradation of toluene. Moreover, doping TiO2 with Mn3+ significantly enhanced light harvesting, and numerous oxygen vacancies can be generated on the catalyst surface because of the presence of doped Mn3+ in the lattice, which adsorbs and transforms the oxygen species for toluene degradation. In addition, modification with an appropriate amount of phosphate groups can facilitate O2 and O3 adsorption on the TiO2 surface that can favor photo-induced charge carrier separation, thereby significantly improving the photocatalytic and ozone catalytic activities. The excellent catalytic performance of mesoporous P-Mn-TiO2 for toluene degradation and outlet ozone elimination was ascribed to the formation of highly reactive oxidizing species such as O(1D), O(3P), and ·OH via the catalytic decomposition of O3 adsorbed on the oxygen vacancy sites containing Mn and phosphate groups on the catalyst surface. In the VUV-PCO process, toluene was first destructed via VUV photolysis and oxidized by residual O3 generated from VUV photolysis and the active oxygen species formed in the presence of the catalyst. Finally, toluene and the generated intermediate products were oxidized and degraded to CO2 and H2O through VUV-PCO. In addition, the outlet ozone byproduct was simultaneously eliminated by the multifunctional catalyst.
  • 加载中
    1. [1]

      Li, M.; Zhang, L. Environ. Pollut. 2014, 189, 85. doi: 10.1016/j.envpol.2014.02.024  doi: 10.1016/j.envpol.2014.02.024

    2. [2]

      Wang, T.; Huang, X.; Wang, Z.; Liu, Y.; Zhou, D.; Ding, K.; Wang, H.; Qi, X.; Ding, A. Sci. Total Environ. 2020, 730, 138888. doi: 10.1016/j.scitotenv.2020.138888  doi: 10.1016/j.scitotenv.2020.138888

    3. [3]

      Gao, J.; Woodward, A.; Vardoulakis, S.; Kovats, S.; Wilkinson, P.; Li, L.; Xu, L.; Li, J.; Yang, J.; Li, J.; et al. Sci. Total Environ. 2017, 578, 148. doi: 10.1016/j.scitotenv.2016.10.231  doi: 10.1016/j.scitotenv.2016.10.231

    4. [4]

      Gotzias, A.; Tylianakis, E.; Froudakis, G.; Steriotis, T. Microporous Mesoporous Mater. 2015, 209, 141. doi: 10.1016/j.micromeso.2014.08.052  doi: 10.1016/j.micromeso.2014.08.052

    5. [5]

      Huang, H.; Huang, W.; Xu, Y.; Ye, X.; Wu, M.; Shao, Q.; Ou, G.; Peng, Z.; Shi, J.; Chen, J.; et al. Catal. Today 2015, 258, 627. doi: 10.1016/j.cattod.2015.01.006  doi: 10.1016/j.cattod.2015.01.006

    6. [6]

      Estrada, J. M.; Bernal, O. I.; Flickinger, M. C.; Munoz, R.; Deshusses, M. A. Biotechnol. Bioeng. 2015, 112, 263. doi: 10.1002/bit.25353  doi: 10.1002/bit.25353

    7. [7]

      Sultana, S.; Vandenbroucke, A.; Leys, C.; De Geyter, N.; Morent, R. Catalysts 2015, 5, 718. doi: 10.3390/catal5020718  doi: 10.3390/catal5020718

    8. [8]

      Borén, E.; Larsson, S. H.; Thyrel, M.; Averheim, A.; Broström, M. Fuel Process. Technol. 2018, 171, 70. doi: 10.1016/j.fuproc.2017.11.007  doi: 10.1016/j.fuproc.2017.11.007

    9. [9]

      He, L.; Ding, Z.; Yin, F.; Wu, M. Springerplus 2016, 5, 1001. doi: 10.1186/s40064-016-2661-z  doi: 10.1186/s40064-016-2661-z

    10. [10]

      Ojala, S.; Pitkäaho, S.; Laitinen, T.; Niskala Koivikko, N.; Brahmi, R.; Gaálová, J.; Matejova, L.; Kucherov, A.; Päivärinta, S.; Hirschmann, C.; et al. Top. Catal. 2011, 54, 1224. doi: 10.1007/s11244-011-9747-1  doi: 10.1007/s11244-011-9747-1

    11. [11]

      Ao, C. H.; Lee, S. C.; Mak, C. L.; Chan, L. Y. Appl. Catal. B: Environ. 2003, 42, 119. doi: 10.1016/s0926-3373(02)00219-9  doi: 10.1016/s0926-3373(02)00219-9

    12. [12]

      Kristin, Z.; Hilmar, B.; Eckhard, W. Water Res. 2014, 52, 131. doi: 10.1016/j.watres.2013.12.034  doi: 10.1016/j.watres.2013.12.034

    13. [13]

      Huang, H.; Lu, H.; Huang, H.; Wang, L.; Zhang, J.; Leung, D. Y. C. Front. Environ. Sci. 2016, 4, 17. doi: 10.3389/fenvs.2016.00017  doi: 10.3389/fenvs.2016.00017

    14. [14]

      Han, M.; Mohseni, M. Water Res. 2020, 168, 115169. doi: 10.1016/j.watres.2019.115169  doi: 10.1016/j.watres.2019.115169

    15. [15]

      Tsuji, M.; Miyano, M.; Kamo, N.; Kawahara, T.; Uto, K.; Hayashi, J.; I. Tsuji, T. Environ. Sci. Pollut. Res. Int. 2019, 26, 11314. doi: 10.1007/s11356-019-04475-w  doi: 10.1007/s11356-019-04475-w

    16. [16]

      Chen, J.; He, Z.; Ji, Y.; Li, G.; An, T.; Choi, W. Appl. Catal. B: Environ. 2019, 257, 117912. doi: 10.1016/j.apcatb.2019.117912  doi: 10.1016/j.apcatb.2019.117912

    17. [17]

      Liu, Y.; Wang, Y. Fuel 2019, 243, 352. doi: 10.1016/j.fuel.2019.01.130  doi: 10.1016/j.fuel.2019.01.130

    18. [18]

      Rezaei, E.; Soltan, J.; Chen, N. Appl. Catal. B: Environ. 2013, 136, 239. doi: 10.1016/j.apcatb.2013.01.061  doi: 10.1016/j.apcatb.2013.01.061

    19. [19]

      Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. Water Res. 2015, 79, 128. doi: 10.1016/j.watres.2015.04.038  doi: 10.1016/j.watres.2015.04.038

    20. [20]

      Neubert, S.; Ramakrishnan, A.; Strunk, J.; Shi, H.; Mei, B.; Wang, L.; Bledowski, M.; Guschin, D. A.; Kauer, M.; Wang, Y.; et al. ChemPlusChem 2014, 79, 163. doi: 10.1002/cplu.201300277  doi: 10.1002/cplu.201300277

    21. [21]

      Shayegan, Z.; Lee, C.-S.; Haghighat, F. Chem. Eng. J. 2018, 334, 2408. doi: 10.1016/j.cej.2017.09.153  doi: 10.1016/j.cej.2017.09.153

    22. [22]

      Ma, J.; Wang, C.; He, H. Appl. Catal. B: Environ. 2017, 201, 503. doi: 10.1016/j.apcatb.2016.08.050  doi: 10.1016/j.apcatb.2016.08.050

    23. [23]

      Xu, H.; Yan, N.; Qu, Z.; Liu, W.; Mei, J.; Huang, W.; Zhao, S. Environ. Sci. Technol. 2017, 51, 8879. doi: 10.1021/acs.est.6b06079  doi: 10.1021/acs.est.6b06079

    24. [24]

      Li, Z.; Luan, Y.; Qu, Y.; Jing, L. ACS Appl. Mater. Interfaces 2015, 7, 22727. doi: 10.1021/acsami.5b04267  doi: 10.1021/acsami.5b04267

    25. [25]

      Liu, H.; Liew, K. M.; Pan, C. RSC Adv. 2014, 4, 35928. doi: 10.1039/c4ra04305g  doi: 10.1039/c4ra04305g

    26. [26]

      Liu, S.; Yu, J.; Wang, W. Phys. Chem. Chem. Phys. 2010, 12, 12308. doi: 10.1039/c0cp00036a  doi: 10.1039/c0cp00036a

    27. [27]

      Huang, H.; Huang, H.; Zhang, L.; Hu, P.; Ye, X.; Leung, D. Y. C. Chem. Eng. J. 2015, 259, 534. doi: 10.1016/j.cej.2014.08.057  doi: 10.1016/j.cej.2014.08.057

    28. [28]

      Ji, J.; Xu, Y.; Huang, H.; He, M.; Liu, S.; Liu, G.; Xie, R.; Feng, Q.; Shu, Y.; Zhan, Y. Chem. Eng. J. 2017, 327. 490. doi: 10.1016/j.cej.2017.06.130  doi: 10.1016/j.cej.2017.06.130

    29. [29]

      Ismail, A. A.; Bahnemann, D. W. J. Phys. Chem. C 2011, 115, 5784. doi: 10.1021/jp110959b  doi: 10.1021/jp110959b

    30. [30]

      Hu, S.; Qiao, P.; Zhang, L.; Jiang, B.; Gao, Y.; Hou, F.; Wu, B.; Li, Q.; Jiang, Y.; Tian, C.; et al. Appl. Catal. B: Environ. 2018, 239, 317. doi: 10.1016/j.apcatb.2018.08.017  doi: 10.1016/j.apcatb.2018.08.017

    31. [31]

      Huang, Y.; Wang, P.; Wang, Z.; Rao, Y.; Cao, J.-J.; Pu, S.; Ho, W.; Lee, S. C. Appl. Catal. B: Environ. 2019, 240, 122. doi: 10.1016/j.apcatb.2018.08.078  doi: 10.1016/j.apcatb.2018.08.078

    32. [32]

      Chang, T.; Shen, Z.; Huang, Y.; Lu, J.; Ren, D.; Sun, J.; Cao, J.; Liu, H. Chem. Eng. J. 2018, 348, 15. doi: 10.1016/j.cej.2018.04.186  doi: 10.1016/j.cej.2018.04.186

    33. [33]

      Guo, R.; Wang, S.; Pan, W.; Li, M.; Sun, P.; Liu, S.; Sun, X.; Liu, S.; Liu, J. J. Phys. Chem. C 2017, 121, 7881. doi: 10.1021/acs.jpcc.7b00290  doi: 10.1021/acs.jpcc.7b00290

    34. [34]

      Deng, S.; Meng, T.; Xu, B.; Gao, F.; Ding, Y.; Yu, L.; Fan, Y. ACS Catal. 2016, 6, 5807. doi: 10.1021/acscatal.6b01121  doi: 10.1021/acscatal.6b01121

    35. [35]

      He, H.; Lin, X.; Li, S.; Wu, Z.; Gao, J.; Wu, J.; Wen, W.; Ye, D.; Fu, M. Appl. Catal. B: Environ. 2018, 223, 134. doi: 10.1016/j.apcatb.2017.08.084  doi: 10.1016/j.apcatb.2017.08.084

    36. [36]

      Kim, J.; Choi, W. Appl. Catal. B: Environ. 2011, 106, 39. doi: 10.1016/j.apcatb.2011.05.002  doi: 10.1016/j.apcatb.2011.05.002

    37. [37]

      Zhu, X.; Zhang, S.; Yu, X.; Zhu, X.; Zheng, C.; Gao, X.; Luo, Z.; Cen, K. J. Hazard. Mater. 2017, 337, 105. doi: 10.1016/j.jhazmat.2017.03.053  doi: 10.1016/j.jhazmat.2017.03.053

    38. [38]

      Leedahl, B.; Zatsepin, D. A.; Boukhvalov, D.; Kurmaev, E.; Green, R.; Zhidkov, I.; Kim, S.; Cui, L.; Gavrilov, N.; Cholakh, S. J. Phys. Chem. C 2014, 118, 28143. doi: 10.1021/jp509761c  doi: 10.1021/jp509761c

    39. [39]

      Cheng, Z.; Peng, S.; Jiang, Y.; Yu, J. Chen, J. Chem. Eng. J. 2013, 228, 1003. doi: 10.1016/j.cej.2013.05.076  doi: 10.1016/j.cej.2013.05.076

    40. [40]

      Fu, P.; Feng, J.; Yang, H.; Yang, T. Process Saf. Environ. Prot. 2016, 102, 64. doi: 10.1016/j.psep.2016.02.010  doi: 10.1016/j.psep.2016.02.010

    41. [41]

      Zhu, G.; Zhu, J.; Jiang, W.; Zhang, Z.; Wang, J.; Zhu, Y.; Zhang, Q. Appl. Catal. B: Environ. 2017, 209, 729. doi: 10.1016/j.apcatb.2017.02.068  doi: 10.1016/j.apcatb.2017.02.068

    42. [42]

      Wang, F.; Dai, H.; Deng, J.; Bai, G.; Ji, K.; Liu, Y. Environ. Sci. Technol. 2012, 46, 4034. doi: 10.1021/es204038j  doi: 10.1021/es204038j

    43. [43]

      Zhu, L.; Wang, J.; Rong, S.; Wang, H.; Zhang, P. Appl. Catal. B: Environ. 2017, 211, 212. doi: 10.1016/j.apcatb.2017.04.025  doi: 10.1016/j.apcatb.2017.04.025

  • 加载中
    1. [1]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(10)
  • Abstract views(540)
  • HTML views(135)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return