Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2

Tianjie Wang Yaowei Wang Yuhui Chen Jianpeng Liu Huibing Shi Limin Guo Zhiwei Zhao Chuntai Liu Zhangquan Peng

Citation:  Tianjie Wang, Yaowei Wang, Yuhui Chen, Jianpeng Liu, Huibing Shi, Limin Guo, Zhiwei Zhao, Chuntai Liu, Zhangquan Peng. Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2[J]. Acta Physico-Chimica Sinica, 2022, 38(8): 200907. doi: 10.3866/PKU.WHXB202009071 shu

锂-空气电池的实用化之路:规避二氧化碳负面效应

    作者简介:

    Yuhui Chen obtained his Bachelor degree in Fudan University in 2009, and received his Ph.D. degree from University of St Andrews (United Kingdom) in 2014. Later, he worked with Prof. Peter Bruce at the University of Oxford (United Kingdom) on the topic of metal-air batteries. Since 2017, he is the professor at Nanjing Tech University. His research interests include CO2 electrochemical catalysis and novel batteries such as metal-air batteries;


    Limin Guo obtained her MSc and Ph.D. degrees from Changchun Institute of Applied Chemistry (CIAC) in 2004 and 2016, respectively. In 2018 she worked as an assistant professor in Jilin Engineering Normal University and promoted to full professor in 2020. Currently she is a professor in the College of Environment & Chemical Engineering of Dalian Jiaotong University. Her research interests include non-aqueous lithium-ion and lithium-air batteries investigated by the in situ electrochemistry techniques;


    Zhangquan Peng obtained his Bachelor degree in Wuhan University in 1997, and received his MSc and Ph.D. degrees from Changchun Institute of Applied Chemistry (CIAC) in 2000 and 2003, respectively. He continued by working as a postdoctoral researcher at University of Dusseldorf (Germany), University of Aarhus (Denmark) and University of St Andrews (United Kingdom) from 2004 to 2012. From 2012 to 2020, he worked as a principle investigator on the topic of interfacial electrochemistry of various energy storage devices in CIAC. Currently, he is the supervisor of the Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics (DICP). His research interests include in situ electrochemistry coupled with theoretical calculation focusing on Li-ion and Li-O2 batteries;
    通讯作者: 陈宇辉, cheny@njtech.edu.cn
    郭丽敏, lmguo@ciac.ac.cn
    彭章泉, zqpeng@dicp.ac.cn
  • 基金项目:

    国家重点研发计划 2016YFB0100100

    国家重点研发计划 2018YFB0104400

    国家自然科学基金 21972055

    国家自然科学基金 21825202

    国家自然科学基金 21575135

    国家自然科学基金 21733012

    国家自然科学基金 51773092

    国家自然科学基金 21975124

    国家自然科学基金 21972133

    英国皇家学会牛顿基金 NAF/R2/180603

摘要: 与其他的锂电池体系相比,锂-空气电池具有最高的理论比能量,被认为有潜力成为终极能量转换和储存装置。目前的锂-空气电池常常使用气体钢瓶提供纯氧气,而非空气中的氧气,这种电池设计极大降低了锂-空气电池的能量密度和实用性。然而,当空气作为锂-空气电池的氧气供给源时,二氧化碳作为杂质会引起严重的副反应,从而降低锂-空气电池的性能。要解决二氧化碳引起的副反应,理解其反应机制至关重要。本文综述了锂-空气电池中有关二氧化碳诱发的化学/电化学反应的研究进展; 总结了可缓解二氧化碳负面效应的有效策略。此外,对二氧化碳选透膜材料和分离技术用于锂-空气电池进行了展望。

English

    1. [1]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741

    2. [2]

      Yang, S.; He, P.; Zhou, H. Energy Storage Mater. 2018, 13, 29. doi: 10.1016/j.ensm.2017.12.020

    3. [3]

      Imanishi, N.; Yamamoto, O. Mater. Today 2014, 17, 24. doi: 10.1016/j.mattod.2013.12.004

    4. [4]

      Lu, J.; Amine, K. Energies 2013, 6, 6016. doi: 10.3390/en6116016

    5. [5]

      杨泽, 张旺, 沈越, 袁利霞, 黄云辉. 物理化学学报, 2016, 32, 1062. doi: 10.3866/PKU.WHXB201603231Yang, Z.; Zhang, W.; Shen, Y.; Yuan, L. X.; Huang, Y. H. Acta Phys. -Chim. Sin. 2016, 32, 1062. doi: 10.3866/PKU.WHXB201603231

    6. [6]

      Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci. 2011, 4, 3243. doi: 10.1039/c1ee01598b

    7. [7]

      Li, H.; Wang, Z.; Chen, L.; Huang, X. Adv. Mater. 2009, 21, 4593. doi: 10.1002/adma.200901710

    8. [8]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19. doi: 10.1038/nmat3191

    9. [9]

      Xu, J.; Liu, Q.; Yu, Y.; Wang, J.; Yan, J.; Zhang, X. Adv. Mater. 2017, 29, 1606552. doi: 10.1002/adma.201606552

    10. [10]

      Jian, Z.; Liu, P.; Li, F.; He, P.; Guo, X.; Chen, M.; Zhou, H. Angew. Chem. Int. Ed. 2014, 53, 442. doi: 10.1002/anie.201307976

    11. [11]

      Li, C.; Guo, Z.; Yang, B.; Liu, Y.; Wang, Y.; Xia, Y. Angew. Chem. Int. Ed. 2017, 56, 9126. doi: 10.1002/anie.201705017

    12. [12]

      Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. J. Am. Chem. Soc. 2011, 133, 8040. doi: 10.1021/ja2021747

    13. [13]

      McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. J. Phys. Chem. Lett. 2011, 2, 1161. doi: 10.1021/jz200352v

    14. [14]

      Peng, Z.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.; Giordani, V.; Bardé, F.; Novák, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Angew. Chem. Int. Ed. 2011, 50, 6351. doi: 10.1002/anie.201100879

    15. [15]

      Débart, A.; Bao, J.; Armstrong, G.; Bruce, P. G. J. Power Sources 2007, 174, 1177. doi: 10.1016/j.jpowsour.2007.06.180

    16. [16]

      Giordani, V.; Freunberger, S. A.; Bruce, P. G.; Tarascon, J. M.; Larcher, D. Electrochem. Solid State Lett. 2010, 13, A180. doi: 10.1149/1.3494045

    17. [17]

      Lu, Y.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. Electrochem. Solid State Lett. 2010, 13, A69. doi: 10.1149/1.3363047

    18. [18]

      Aurbach, D. J. Power Sources 2000, 89, 206. doi: 10.1016/S0378-7753(00)00431-6

    19. [19]

      Cohen, Y. S.; Cohen, Y.; Aurbach, D. J. Phys. Chem. B 2000, 104, 12282. doi: 10.1021/jp002526b

    20. [20]

      Choi, N. S.; Lee, Y. M.; Cho, K. Y.; Ko, D. H.; Park, J. K. Electrochem. Commun. 2004, 6, 1238. doi: 10.1016/j.elecom.2004.09.023

    21. [21]

      Read, J. J. Electrochem. Soc. 2006, 153, A96. doi: 10.1149/1.2131827

    22. [22]

      Qiao, Y.; Deng, H.; He, P.; Zhou, H. Joule 2020, 4, 1445. doi: 10.1016/j.joule.2020.05.012

    23. [23]

      Guo, Z.; Dong, X.; Yuan, S.; Wang, Y.; Xia, Y. J. Power Sources 2014, 264, 1. doi: 10.1016/j.jpowsour.2014.04.079

    24. [24]

      Meini, S.; Piana, M.; Tsiouvaras, N.; Garsuch, A.; Gasteiger, H. A. Electrochem. Solid State Lett. 2012, 15, A45. doi: 10.1149/2.005204esl

    25. [25]

      Li, F.; Wu, S.; Li, D.; Zhang, T.; He, P.; Yamada, A.; Zhou, H. Nat. Commun. 2015, 6, 7. doi: 10.1038/ncomms8843

    26. [26]

      Shui, J.; Okasinski, J. S.; Kenesei, P.; Dobbs, H. A.; Zhao, D.; Almer, J. D.; Liu, D. Nat. Commun. 2013, 4, 2255. doi: 10.1038/ncomms3255

    27. [27]

      Shen, X.; Liu, H.; Cheng, X.; Yan, C.; Huang, J. Energy Storage Mater. 2018, 12, 161. doi: 10.1016/j.ensm.2017.12.002

    28. [28]

      Amici, J.; Francia, C.; Zeng, J.; Bodoardo, S.; Penazzi, N. J. Appl. Electrochem. 2016, 46, 617. doi: 10.1007/s10800-016-0951-3

    29. [29]

      Xie, M.; Huang, Z.; Lin, X.; Li, Y.; Huang, Z.; Yuan, L.; Shen, Y.; Huang, Y. Energy Storage Mater. 2019, 20, 307. doi: 10.1016/j.ensm.2018.11.023

    30. [30]

      Xu, S.; Lau, S.; Archer, L. A. Inorg. Chem. Front. 2015, 2, 1070. doi: 10.1039/c5qi00169b

    31. [31]

      Wadhawan, J. D.; Welford, P. J.; Maisonhaute, E.; Climent, V.; Lawrence, N. S.; Compton, R. G.; McPeak, H. B.; Hahn, C. E. W. J. Phys. Chem. B 2001, 105, 10659. doi: 10.1021/jp012160i

    32. [32]

      Albertus, P.; Girishkumar, G.; McCloskey, B.; Sánchez-Carrera, R. S.; Kozinsky, B.; Christensen, J.; Luntz, A. C. J. Electrochem. Soc. 2011, 158, A343. doi: 10.1149/1.3527055

    33. [33]

      Yang, S.; He, P.; Zhou, H. Energy Environ. Sci. 2016, 9, 1650. doi: 10.1039/c6ee00004e

    34. [34]

      Farooqui, U. R.; Ahmad, A. L.; Hamid, N. A. Renew. Sust. Energ. Rev. 2017, 77, 1114. doi: 10.1016/j.rser.2016.11.220

    35. [35]

      Dias, A. M. A.; Freire, M.; Coutinho, J. A. P.; Marrucho, I. M. Fluid Phase Equilibr. 2004, 222, 325. doi: 10.1016/j.fluid.2004.06.037

    36. [36]

      Liu, L.; Guo, H.; Fu, L.; Chou, S.; Thiele, S.; Wu, Y.; Wang, J. Small 2019, 15, 1903854. doi: 10.1002/smll.201903854

    37. [37]

      Jiang, X.; Li, S. W.; He, S. S.; Bai, Y. P.; Shao, L. J. Mater. Chem. A. 2018, 6, 15064. doi: 10.1039/c8ta03872d

    38. [38]

      Guo, X. Y.; Qiao, Z. H.; Liu, D. H.; Zhong, C. L. J. Mater. Chem. A. 2019, 7, 24738. doi: 10.1039/c9ta09012f

    39. [39]

      龚金华, 王臣辉, 卞子君, 阳立, 胡军, 刘洪来. 物理化学学报, 2015, 31, 1963. doi: 10.3866/PKU.WHXB201508282Gong, J. H.; Wang, C. H.; Bian, Z. J.; Yang, L.; Hu, J.; Liu, H. L. Acta Phys. -Chim. Sin. 2015, 31, 1963. doi: 10.3866/PKU.WHXB201508282

    40. [40]

      Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Bruce, P. G. J. Am. Chem. Soc. 2013, 135, 494. doi: 10.1021/ja310258x

    41. [41]

      Zhang, T.; Zhou, H. Nat. Commun. 2013, 4, 1817. doi: 10.1038/ncomms2855

    42. [42]

      Dean, J. A. Mater. Manuf. Process. 1990, 5, 687. doi: 10.1080/10426919008953291

    43. [43]

      Takechi, K.; Shiga, T.; Asaoka, T. Chem. Comm. 2011, 47, 3463. doi: 10.1039/c0cc05176d

    44. [44]

      Gowda, S. R.; Brunet, A.; Wallraff, G. M.; McCloskey, B. D. J. Phys. Chem. Lett. 2013, 4, 276. doi: 10.1021/jz301902h

    45. [45]

      Mekonnen, Y. S.; Knudsen, K. B.; Mýrdal, J. S. G.; Younesi, R.; Højberg, J.; Hjelm, J.; Norby, P.; Vegge, T. J. Chem. Phys. 2014, 140, 121101. doi: 10.1063/1.4869212

    46. [46]

      Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard Ⅲ, W. A.; Kim, H.; Kang, K. J. Am. Chem. Soc. 2013, 135, 9733. doi: 10.1021/ja4016765

    47. [47]

      Yin, W.; Grimaud, A.; Lepoivre, F.; Yang, C.; Tarascon, J. M. J. Phys. Chem. Lett. 2017, 8, 214. doi: 10.1021/acs.jpclett.6b02610

    48. [48]

      Zhao, Z.; Su, Y.; Peng, Z. J. Phys. Chem. Lett. 2019, 10, 322. doi: 10.1021/acs.jpclett.8b03272

    49. [49]

      Albertus, P.; Viswanathan, V.; Christensen, J. F.; Kozinsky, B.; Sanchez-carrera, R.; Iohmann, T. High Specific-Energy Li/O2-CO2 Battery. US Patent, US12/907205, 2012.

    50. [50]

      Yang, S.; Qiao, Y.; He, P.; Liu, Y.; Cheng, Z.; Zhu, J.; Zhou, H. Energy Environ. Sci. 2017, 10, 972. doi: 10.1039/c6ee03770d

    51. [51]

      Qiao, Y.; Yi, J.; Wu, S.; Liu, Y.; Yang, S.; He, P.; Zhou, H. Joule 2017, 1, 359. doi: 10.1016/j.joule.2017.07.001

    52. [52]

      Mahne, N.; Renfrew, S. E.; McCloskey, B. D.; Freunberger, S. A. Angew. Chem. Int. Ed. 2018, 57, 5529. doi: 10.1002/anie.201802277

    53. [53]

      Baek, K.; Jeon, W. C.; Woo, S.; Kim, J. C.; Lee, J. G.; An, K.; Kwak, S. K.; Kang, S. J. Nat. Commun. 2020, 11, 456. doi: 10.1038/s41467-019-14121-1

    54. [54]

      Li, C.; Guo, Z.; Yang, B.; Liu, Y.; Wang, Y.; Xia, Y. Angew. Chem. Int. Ed. 2017, 56, 9126. doi: 10.1002/anie.201705017

    55. [55]

      Qiao, Y.; Yi, J.; Guo, S.; Sun, Y.; Wu, S.; Liu, X.; Yang, S.; He, P.; Zhou, H. Energy Environ. Sci. 2018, 11, 1211. doi: 10.1039/c7ee03341a

    56. [56]

      Wang, X.; Wang, C.; Xie, Z.; Zhang, X.; Chen, Y.; Wu, D.; Zhou, Z. Chem. Electro. Chem. 2017, 4, 2145. doi: 10.1002/celc.201700539

    57. [57]

      Liu, Z.; Zhang, Y.; Jia, C.; Wan, H.; Peng, Z.; Bi, Y.; Liu, Y.; Peng, Z.; Wang, Q.; Li, H.; Wang, D.; Zhang, J. Nano Energy 2017, 36, 390. doi: 10.1016/j.nanoen.2017.04.049

    58. [58]

      Hong, M.; Choi, H. C.; Byon, H. R. Chem. Mater. 2015, 27, 2234. doi: 10.1021/acs.chemmater.5b00488

    59. [59]

      Fan, L.; Tang, D.; Wang, D.; Wang, Z.; Chen, L. Nano Res. 2016, 9, 3903. doi: 10.1007/s12274-016-1259-7

    60. [60]

      Song, S.; Xu, W.; Zheng, J.; Luo, L.; Engelhard, M. H.; Bowden, M. E.; Liu, B.; Wang, C. M.; Zhang, J. G. Nano Lett. 2017, 17, 1417. doi: 10.1021/acs.nanolett.6b04371

    61. [61]

      Bie, S.; Du, M.; He, W.; Zhang, H.; Yu, Z.; Liu, J.; Liu, M.; Yan, W.; Zhou, L.; Zou, Z. ACS Appl. Mater. Interfaces 2019, 11, 5146. doi: 10.1021/acsami.8b20573

    62. [62]

      Zhang, P.; Zhang, J.; Sheng, T.; Lu, Y.; Yin, Z.; Li, Y.; Peng, X.; Zhou, Y.; Li, J.; Wu, Y.; et al. ACS Catal. 2019, 10, 1640. doi: 10.1021/acscatal.9b04138

    63. [63]

      Zhang, J.; Xu, W.; Li, X.; Liu, W. J. Electrochem. Soc. 2010, 157, A940. doi: 10.1149/1.3430093

    64. [64]

      Zhao, D.; Timmons, D. J.; Yuan, D.; Zhou, H. Acc. Chem. Res. 2011, 44, 123. doi: 10.1021/ar100112y

    65. [65]

      Liu, J.; Thallapally, P. K.; McGrail, B. P.; Brown, D. R.; Liu, J. Chem. Soc. Rev. 2012, 41, 2308. doi: 10.1039/c1cs15221a

    66. [66]

      Ma, X. J.; Chai, Y. T.; Li, P.; Wang, B. Acc. Chem. Res. 2019, 52, 1461. doi: 10.1021/acs.accounts.9b00113

    67. [67]

      程龙, 刘公平, 金万勤. 物理化学学报, 2019, 35, 1090. doi: 10.3866/PKU.WHXB201810059Cheng, L.; Liu, G. P.; Jin, W. Q. Acta Phys. -Chim. Sin. 2019, 35, 1090. doi: 10.3866/PKU.WHXB201810059

    68. [68]

      Cao, L.; Lv, F.; Liu, Y.; Wang, W.; Huo, Y.; Fu, X.; Sun, R.; Lu, Z. Chem. Commun. 2015, 51, 4364. doi: 10.1039/c4cc09281c

    69. [69]

      Heydari-Gorji, A.; Belmabkhout, Y.; Sayari, A. Langmuir 2011, 27, 12411. doi: 10.1021/la202972t

    70. [70]

      Wang, X.; Chen, L.; Guo, Q. Chem. Eng. J. 2015, 260, 573. doi: 10.1016/j.cej.2014.08.107

    71. [71]

      Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M. Energy Fuels 2006, 20, 1514. doi: 10.1021/ef050402y

    72. [72]

      Wurzbacher, J. A.; Gebald, C.; Piatkowski, N.; Steinfeld, A. Environ. Sci Technol. 2012, 46, 9191. doi: 10.1021/es301953k

    73. [73]

      Chen, Z.; Deng, S.; Wei, H.; Wang, B.; Huang, J.; Yu, G. ACS Appl. Mater. Interfaces 2013, 5, 6937. doi: 10.1021/am400661b

    74. [74]

      Sujan, A. R.; Pang, S. H.; Zhu, G.; Jones, C. W.; Lively, R. P. ACS Sustain. Chem. Eng. 2019, 7, 5264. doi: 10.1021/acssuschemeng.8b06203

    75. [75]

      Bacsik, Z.; Ahlsten, N.; Ziadi, A.; Zhao, G.; Garcia-Bennett, A. E.; Martín-Matute, B.; Hedin, N. Langmuir 2011, 27, 11118. doi: 10.1021/la202033p

    76. [76]

      Babel, S.; Kurniawan, T. A. J. Hazard. Mater. 2003, 97, 219. doi: 10.1016/S0304-3894(02)00263-7

    77. [77]

      Chue, K. T.; Kim, J. N.; Yoo, Y. J.; Cho, S. H.; Yang, R. T. Ind. Eng. Chem. Res. 1995, 34, 591. doi: 10.1021/ie00041a020

    78. [78]

      Merel, J.; Clausse, M.; Meunier, F. Ind. Eng. Chem. Res. 2008, 47, 209. doi: 10.1021/ie071012x

    79. [79]

      Chou, C.; Chen, C. Sep. Purif. Technol. 2004, 39, 51. doi: 10.1016/j.seppur.2003.12.009

    80. [80]

      Mérel, J.; Clausse, M.; Meunier, F. Environ. Prog. 2006, 25, 327. doi: 10.1002/ep.10166

    81. [81]

      Song, Z.; Dong, Q.; Xu, W. L.; Zhou, F.; Liang, X.; Yu, M. ACS Appl. Mater. Interfaces 2018, 10, 769. doi: 10.1021/acsami.7b16574

  • 加载中
计量
  • PDF下载量:  16
  • 文章访问数:  1223
  • HTML全文浏览量:  191
文章相关
  • 发布日期:  2022-08-15
  • 收稿日期:  2020-09-21
  • 接受日期:  2020-10-16
  • 修回日期:  2020-10-15
  • 网络出版日期:  2020-10-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章