Citation: Li Kaining, Zhang Mengxi, Ou Xiaoyu, Li Ruina, Li Qin, Fan Jiajie, Lv Kangle. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 200801. doi: 10.3866/PKU.WHXB202008010 shu

Strategies for the Fabrication of 2D Carbon Nitride Nanosheets

  • Corresponding author: Lv Kangle, lvkangle@mail.scuec.edu.cn
  • Received Date: 4 August 2020
    Revised Date: 27 August 2020
    Accepted Date: 31 August 2020
    Available Online: 7 September 2020

    Fund Project: The project was supported by National Natural Science Foundation of China (51672312)National Natural Science Foundation of China 51672312

  • Layered graphitic carbon nitride (g-C3N4) is a typical polymeric semiconductor with an sp2 π-conjugated system having great potential in energy conversion, environmental purification, materials science, etc., owing to its unique physicochemical and electrical properties. However, bulk g-C3N4 obtained by calcination suffers from a low specific surface area, rapid charge carrier recombination, and poor dispersion in aqueous solutions, which limit its practical applications. Controlling the size of g-C3N4 (e.g., preparing g-C3N4 nanosheets) can effectively solve the above problems. Compared with the bulk material, g-C3N4 nanosheets have a larger specific surface area, richer active sites, and a larger band gap due to the quantum confinement effect. As g-C3N4 has a layered structure with strong in-plane C-N covalent bonds and weak van der Waals forces between the layers, g-C3N4 nanosheets can be prepared by exfoliating bulk g-C3N4. Alternatively, g-C3N4 nanosheets can otherwise be obtained through the anisotropic assembly of organic precursors. Nevertheless, some of these methods have various limitations, such as high energy consumption, are time consuming, and have low yield. Accordingly, developing green and cost-effective exfoliation and preparation strategies for g-C3N4 nanosheets is necessary. Herein, the research progress of the exfoliation and preparation strategies (including the thermal oxidation etching process, the ultrasound-assisted route, the chemical exfoliation, the mechanical method, and the template method) for two-dimensional C3N4 nanosheets are introduced. Their features are systematically analyzed and the perspectives and challenges in the preparation of g-C3N4 nanosheets are discussed. This study emphasizes the following: (1) The preparation method of g-C3N4 nanosheets should be properly selected according to the practical application needs. Additionally, various strategies (such as chemical method and ultrasonic method) can be combined to exfoliate nanosheets from bulk g-C3N4; (2) More reasonable nano- or even subnanostructured g-C3N4 nanosheets should be continuously explored; (3) Novel modification strategies, such as defective engineering, heterojunction construction, and surface functional group regulation, should be introduced to improve the reactivity and selectivity of the g-C3N4 nanosheets; (4) The application of in situ characterization techniques (such as in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), electron spin resonance (ESR) spectroscopy, and Raman spectroscopy) should also be strengthened to monitor the detailed catalytic process and investigate the g-C3N4 nanosheet structure-efficiency relationship. (5) To gain a deeper understanding of the relationship between the macroscopic properties and the microscopic structure, the combination of theoretical calculations and experimental results should be strengthened, which will be beneficial for exploiting high-quality g-C3N4 nanosheets.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    2. [2]

      Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. Adv. Energy Mater. 2015, 5, 1500010. doi: 10.1002/aenm.201500010  doi: 10.1002/aenm.201500010

    3. [3]

      Wang, J.; Jin, X.; Li, C.; Wang, W.; Wu, H.; Guo, S. Chem. Eng. J. 2019, 370, 831. doi: 10.1016/j.cej.2019.03.229  doi: 10.1016/j.cej.2019.03.229

    4. [4]

      Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Drug Discov. Today 2017, 22, 1302. doi: 10.1016/j.drudis.2017.04.002  doi: 10.1016/j.drudis.2017.04.002

    5. [5]

      Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. Nat. Rev. Mater. 2017, 2, 16098. doi: 10.1038/natrevmats.2016.98  doi: 10.1038/natrevmats.2016.98

    6. [6]

      Li, K.; Zhang, S.; Li, Y.; Fan, J.; Lv, K. Chin. J. Catal. 2021, 42, 3. doi: 10.1016/s1872-2067(20)63630-0  doi: 10.1016/s1872-2067(20)63630-0

    7. [7]

      Lv, K.; Li, K.; Li, Z.; Huang, W.; Li, Q.; Shen, Q. J. Xuzhou Instit. Technol. (Nat. Sci. Ed.) 2019, 34, 18.  doi: 10.15873/j.cnki.jxit.000314

    8. [8]

      Hu, W.; Han, G.; Liu, Y.; Dong, B.; Chai, Y.; Liu, Y.; Liu, C. Int. J. Hydrog. Energy 2015, 40, 6552. doi: 10.1016/j.ijhydene.2015.03.150  doi: 10.1016/j.ijhydene.2015.03.150

    9. [9]

      Ning, M. Q.; Lu, M. M.; Li, J. B.; Chen, Z.; Dou, Y. K.; Wang, C. Z.; Rehman, F.; Cao, M. S.; Jin, H. B. Nanoscale 2015, 7, 15734. doi: 10.1039/c5nr04670j  doi: 10.1039/c5nr04670j

    10. [10]

      Krishnamoorthy, K.; Pazhamalai, P.; Kim, S. J. Energy Environ. Sci. 2018, 11, 1595. doi: 10.1039/c8ee00160j  doi: 10.1039/c8ee00160j

    11. [11]

      Pazhamalai, P.; Krishnamoorthy, K.; Sahoo, S.; Mariappan, V. K.; Kim, S. J. ACS Appl. Mater. Interfaces 2019, 11, 624. doi: 10.1021/acsami.8b15323  doi: 10.1021/acsami.8b15323

    12. [12]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    13. [13]

      Zhang, J.; Chen, Y.; Wang, X. Energy Environ. Sci. 2015, 8, 3092. doi: 10.1039/c5ee01895a  doi: 10.1039/c5ee01895a

    14. [14]

      Low, J.; Cao, S.; Yu, J.; Wageh, S. Chem. Commun. 2014, 50, 10768. doi: 10.1039/c4cc02553a  doi: 10.1039/c4cc02553a

    15. [15]

      Dong, X.; Cheng, F. J. Mater. Chem. A 2015, 3, 23642. doi: 10.1039/c5ta07374j  doi: 10.1039/c5ta07374j

    16. [16]

      Panneri, S.; Ganguly, P.; Nair, B. N.; Mohamed, A. A.; Warrier, K. G.; Hareesh, U. N. Environ. Sci. Pollut. Res. Int. 2017, 24, 8609. doi: 10.1007/s11356-017-8538-z  doi: 10.1007/s11356-017-8538-z

    17. [17]

      Han, Q.; Wang, B.; Zhao, Y.; Hu, C.; Qu, L. Angew. Chem. Int. Ed. 2015, 54, 11433. doi: 10.1002/anie.201504985  doi: 10.1002/anie.201504985

    18. [18]

      Yu, Y.; Yan, W.; Wang, X.; Li, P.; Gao, W.; Zou, H.; Wu, S.; Ding, K. Adv. Mater. 2018, 30, 1705060. doi: 10.1002/adma.201705060  doi: 10.1002/adma.201705060

    19. [19]

      Yang, C.; Zhang, S.; Huang, Y.; Lv, K.; Fang, S.; Wu, X.; Li, Q.; Fan, J. Appl. Surf. Sci. 2020, 505, 144654. doi: 10.1016/j.apsusc.2019.144654  doi: 10.1016/j.apsusc.2019.144654

    20. [20]

      Cheng, J.; Hu, Z.; Lv, K.; Wu, X.; Li, Q.; Li, Y.; Li, X.; Sun, J. Appl. Catal. B 2018, 232, 330. doi: 10.1016/j.apcatb.2018.03.066  doi: 10.1016/j.apcatb.2018.03.066

    21. [21]

      Liu, M.; Wageh, S.; Al-Ghamdi, A. A.; Xia, P.; Cheng, B.; Zhang, L.; Yu, J. Chem. Commun. 2019, 55, 14023. doi: 10.1039/c9cc07647f  doi: 10.1039/c9cc07647f

    22. [22]

      Sun, Z.; Wang, H.; Wu, Z.; Wang, L. Catal. Today 2018, 300, 160. doi: 10.1016/j.cattod.2017.05.033  doi: 10.1016/j.cattod.2017.05.033

    23. [23]

      Li, C.; Yu, S.; Zhang, X.; Wang, Y.; Liu, C.; Chen, G.; Dong, H. J. Colloid Interface Sci. 2019, 538, 462. doi: 10.1016/j.jcis.2018.12.009  doi: 10.1016/j.jcis.2018.12.009

    24. [24]

      Zheng, Q.; Durkin, D. P.; Elenewski, J. E.; Sun, Y.; Banek, N. A.; Hua, L.; Chen, H.; Wagner, M. J.; Zhang, W.; Shuai, D. Environ. Sci. Technol. 2016, 50, 12938. doi: 10.1021/acs.est.6b02579  doi: 10.1021/acs.est.6b02579

    25. [25]

      Fang, S.; Xia, Y.; Lv, K.; Li, Q.; Sun, J.; Li, M. Appl. Catal. B 2016, 185, 225. doi: 10.1016/j.apcatb.2015.12.025  doi: 10.1016/j.apcatb.2015.12.025

    26. [26]

      Liao, J.; Cui, W.; Li, J.; Sheng, J.; Wang, H.; Dong, X. A.; Chen, P.; Jiang, G.; Wang, Z.; Dong, F. Chem. Eng. J. 2020, 379, 122282. doi: 10.1016/j.cej.2019.122282  doi: 10.1016/j.cej.2019.122282

    27. [27]

      Liu, S. H.; Lin, W. X. J. Hazard. Mater. 2019, 368, 468. doi: 10.1016/j.jhazmat.2019.01.082  doi: 10.1016/j.jhazmat.2019.01.082

    28. [28]

      Duan, Y.; Li, X.; Lv, K.; Zhao, L.; Liu, Y. Appl. Surf. Sci. 2019, 492, 166. doi: 10.1016/j.apsusc.2019.06.125  doi: 10.1016/j.apsusc.2019.06.125

    29. [29]

      Li, Y.; Gu, M.; Shi, T.; Cui, W.; Zhang, X.; Dong, F.; Cheng, J.; Fan, J.; Lv, K. Appl. Catal. B 2020, 262, 118281. doi: 10.1016/j.apcatb.2019.118281  doi: 10.1016/j.apcatb.2019.118281

    30. [30]

      Han, X.; Zhang, W.; Ma, X.; Zhong, C.; Zhao, N.; Hu, W.; Deng, Y. Adv. Mater. 2019, 31, e1808281. doi: 10.1002/adma.201808281  doi: 10.1002/adma.201808281

    31. [31]

      Zhuang, Z.; Li, Y.; Li, Z.; Lv, F.; Lang, Z.; Zhao, K.; Zhou, L.; Moskaleva, L.; Guo, S.; Mai, L. Angew. Chem. Int. Ed. 2018, 57, 496. doi: 10.1002/anie.201708748  doi: 10.1002/anie.201708748

    32. [32]

      Wang, S.; He, P.; Jia, L.; He, M.; Zhang, T.; Dong, F.; Liu, M.; Liu, H.; Zhang, Y.; Li, C.; et al. Appl. Catal. B 2019, 243, 463. doi: 10.1016/j.apcatb.2018.10.071  doi: 10.1016/j.apcatb.2018.10.071

    33. [33]

      Zheng, Y.; Jiao, Y.; Zhu, Y.; Cai, Q.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S. Z. J. Am. Chem. Soc. 2017, 139, 3336. doi: 10.1021/jacs.6b13100  doi: 10.1021/jacs.6b13100

    34. [34]

      Sarkar, S.; Sumukh, S. S.; Roy, K.; Kamboj, N.; Purkait, T.; Das, M.; Dey, R. S. J. Colloid Interface Sci. 2020, 558, 182. doi: 10.1016/j.jcis.2019.09.107  doi: 10.1016/j.jcis.2019.09.107

    35. [35]

      Pieta, I. S.; Rathi, A.; Pieta, P.; Nowakowski, R.; Hołdynski, M.; Pisarek, M.; Kaminska, A.; Gawande, M. B.; Zboril, R. Appl. Catal. B 2019, 244, 272. doi: 10.1016/j.apcatb.2018.10.072  doi: 10.1016/j.apcatb.2018.10.072

    36. [36]

      Cheng, J.; Hu, Z.; Li, Q.; Li, X.; Fang, S.; Wu, X.; Li, M.; Ding, Y.; Liu, B.; Yang, C.; et al. Appl. Catal. B 2019, 245, 197. doi: 10.1016/j.apcatb.2018.12.044  doi: 10.1016/j.apcatb.2018.12.044

    37. [37]

      Qin, Z.; Wu, J.; Li, B.; Su, T.; Ji, H. Acta Phys. -Chim. Sin. 2021, 37, 2005027.  doi: 10.3866/PKU.WHXB202005027

    38. [38]

      Hong, Y.; Li, C.; Li, D.; Fang, Z.; Luo, B.; Yan, X.; Shen, H.; Mao, B.; Shi, W. Nanoscale 2017, 9, 14103. doi: 10.1039/c7nr05155g  doi: 10.1039/c7nr05155g

    39. [39]

      Dong, F.; Li, Y.; Wang, Z.; Ho, W. Appl. Surf. Sci. 2015, 358, 393. doi: 10.1016/j.apsusc.2015.04.034  doi: 10.1016/j.apsusc.2015.04.034

    40. [40]

      Niu, P.; Zhang, L.; Liu, G.; Cheng, H. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.201200922  doi: 10.1002/adfm.201200922

    41. [41]

      Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2013, 135, 18. doi: 10.1021/ja308249k  doi: 10.1021/ja308249k

    42. [42]

      Zhang, J.; Li, J.; Wang, W.; Zhang, X.; Tan, X.; Chu, W.; Guo, Y. Adv. Energy Mater. 2018, 8, 1702839. doi: 10.1002/aenm.201702839  doi: 10.1002/aenm.201702839

    43. [43]

      Xu, J.; Zhang, L.; Shi, R.; Zhu, Y. J. Mater. Chem. A 2013, 1, 14766. doi: 10.1039/c3ta13188b  doi: 10.1039/c3ta13188b

    44. [44]

      Lin, L. S.; Cong, Z. X.; Li, J.; Ke, K. M.; Guo, S. S.; Yang, H. H.; Chen, G. N. J. Mater. Chem. B 2014, 2, 1031. doi: 10.1039/c3tb21479f  doi: 10.1039/c3tb21479f

    45. [45]

      Du, X.; Zou, G.; Wang, Z.; Wang, X. Nanoscale 2015, 7, 8701. doi: 10.1039/c5nr00665a  doi: 10.1039/c5nr00665a

    46. [46]

      Kwon, N. H.; Shin, S.; Jin, X.; Jung, Y.; Hwang, G.; Kim, H.; Hwang, S. Appl. Catal. B 2020, 277, 119191. doi: 10.1016/j.apcatb.2020.119191  doi: 10.1016/j.apcatb.2020.119191

    47. [47]

      Han, Q.; Zhao, F.; Hu, C.; Lv, L.; Zhang, Z.; Chen, N.; Qu, L. Nano Res. 2015, 8, 1718. doi: 10.1007/s12274-014-0675-9  doi: 10.1007/s12274-014-0675-9

    48. [48]

      Ji, J.; Wen, J.; Shen, Y.; Lv, Y.; Chen, Y.; Liu, S.; Ma, H.; Zhang, Y. J. Am. Chem. Soc. 2017, 139, 11698. doi: 10.1021/jacs.7b06708  doi: 10.1021/jacs.7b06708

    49. [49]

      Wu, M.; Yan, J. M.; Tang, X. N.; Zhao, M.; Jiang, Q. ChemSusChem 2014, 7, 2654. doi: 10.1002/cssc.201402180  doi: 10.1002/cssc.201402180

    50. [50]

      Lu, X.; Xu, K.; Chen, P.; Jia, K.; Liu, S.; Wu, C. J. Mater. Chem. A 2014, 2, 18924. doi: 10.1039/c4ta04487h  doi: 10.1039/c4ta04487h

    51. [51]

      Xing, W.; Tu, W.; Han, Z.; Hu, Y.; Meng, Q.; Chen, G. ACS Energy Lett. 2018, 3, 514. doi: 10.1021/acsenergylett.7b01328  doi: 10.1021/acsenergylett.7b01328

    52. [52]

      Zhang, J.; Zhang, M.; Yang, C.; Wang, X. Adv. Mater. 2014, 26, 4121. doi: 10.1002/adma.201400573  doi: 10.1002/adma.201400573

    53. [53]

      Li, Y.; Jin, R.; Xing, Y.; Li, J.; Song, S.; Liu, X.; Li, M.; Jin, R. Adv. Energy Mater. 2016, 6, 1601273. doi: 10.1002/aenm.201601273  doi: 10.1002/aenm.201601273

    54. [54]

      Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P. M. Adv. Mater. 2013, 25, 2452. doi: 10.1002/adma.201204453  doi: 10.1002/adma.201204453

    55. [55]

      Ou, H.; Lin, L.; Zheng, Y.; Yang, P.; Fang, Y.; Wang, X. Adv. Mater. 2017, 29, 1700008. doi: 10.1002/adma.201700008  doi: 10.1002/adma.201700008

    56. [56]

      Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; et al. Nat. Nanotechnol. 2008, 3, 563. doi: 10.1038/nnano.2008.215  doi: 10.1038/nnano.2008.215

    57. [57]

      Lin, Q.; Li, L.; Liang, S.; Liu, M.; Bi, J.; Wu, L. Appl. Catal. B 2015, 163, 135. doi: 10.1016/j.apcatb.2014.07.053  doi: 10.1016/j.apcatb.2014.07.053

    58. [58]

      Xue, Z.; Liu, F.; Jiang, J.; Wang, J.; Mu, T. Green Chem. 2017, 19, 5041. doi: 10.1039/c7gc02583a  doi: 10.1039/c7gc02583a

    59. [59]

      Cheng, F.; Wang, H.; Dong, X. Chem. Commun. 2015, 51, 7176. doi: 10.1039/c5cc01035g  doi: 10.1039/c5cc01035g

    60. [60]

      Shi, L.; Chang, K.; Zhang, H.; Hai, X.; Yang, L.; Wang, T.; Ye, J. Small 2016, 12, 4431. doi: 10.1002/smll.201601668  doi: 10.1002/smll.201601668

    61. [61]

      Song, T.; Zhang, P.; Wang, T.; Ali, A.; Zeng, H. Appl. Surf. Sci. 2019, 464, 195. doi: 10.1016/j.apsusc.2018.09.062  doi: 10.1016/j.apsusc.2018.09.062

    62. [62]

      Xu, J.; Wang, H.; Zhang, C.; Yang, X.; Cao, S.; Yu, J.; Shalom, M. Angew. Chem. Int. Ed. 2017, 56, 8426. doi: 10.1002/anie.201611946  doi: 10.1002/anie.201611946

    63. [63]

      Han, Q.; Wang, B.; Gao, J.; Cheng, Z.; Zhao, Y.; Zhang, Z.; Qu, L. ACS Nano 2016, 10, 2745. doi: 10.1021/acsnano.5b07831  doi: 10.1021/acsnano.5b07831

    64. [64]

      Hong, Y.; Li, C.; Fang, Z.; Luo, B.; Shi, W. Carbon 2017, 121, 463. doi: 10.1016/j.carbon.2017.06.020  doi: 10.1016/j.carbon.2017.06.020

    65. [65]

      Wu, X.; Wang, X.; Wang, F.; Yu, H. Appl. Catal. B 2019, 247, 70. doi: 10.1016/j.apcatb.2019.01.088  doi: 10.1016/j.apcatb.2019.01.088

    66. [66]

      Wu, X.; Gao, D.; Yu, H.; Yu, J. Nanoscale 2019, 11, 9608. doi: 10.1039/c9nr00887j  doi: 10.1039/c9nr00887j

  • 加载中
    1. [1]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    2. [2]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    3. [3]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    4. [4]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    5. [5]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    12. [12]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    17. [17]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    18. [18]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    19. [19]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    20. [20]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(4)
  • Abstract views(617)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return