Citation: Zhou Junhui, Ao Zhimin, An Taicheng. DFT Study of the Decomposition Mechanism of H2S on V-Decorated Ti2CO2 Single-Atom Catalyst[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 200708. doi: 10.3866/PKU.WHXB202007086 shu

DFT Study of the Decomposition Mechanism of H2S on V-Decorated Ti2CO2 Single-Atom Catalyst

  • Corresponding author: Ao Zhimin, zhimin.ao@gdut.edu.cn
  • Received Date: 28 July 2020
    Revised Date: 18 August 2020
    Accepted Date: 28 August 2020
    Available Online: 31 August 2020

    Fund Project: This work was supported by National Natural Science Foundation of China (21777033), Science and Technology Program of Guangdong Province, China (2017B020216003), Local Innovative and Research Team Project of Guangdong Pearl River Talents Program (2017BT01Z032), and the Innovation Team Project of Guangdong Provincial Department of Education (2017KCXTD012)Local Innovative and Research Team Project of Guangdong Pearl River Talents Program 2017BT01Z032Science and Technology Program of Guangdong Province, China 2017B020216003National Natural Science Foundation of China 21777033the Innovation Team Project of Guangdong Provincial Department of Education 2017KCXTD012

  • In-depth understanding of the mechanisms of hydrogen sulfide (H2S) adsorption on catalysts during desulfurization from industrial waste gas streams is important for developing effective catalysts to be used in the decomposition of H2S. In this work, the dissociation behavior of H2S adsorbed on a single-atom catalyst (Ti or V-decorated Ti2CO2 surface) was investigated by performing density functional theory (DFT) calculations. The corresponding diffusion behavior revealed that Ti or V atoms could be dispersed on the Ti2CO2 monolayer, without aggregation in the form of single atoms. In addition, analyses of the partial density of states (PDOS), Hirshfeld charges, and electron density difference indicated that the decorated Ti or V atoms led to charge redistribution on the Ti2CO2 surface and significantly improved the interaction between the H2S gas molecules and Ti2CO2, thereby enhancing the catalytic activity of V/Ti2CO2. In order to gain a deeper understanding of the mechanism of H2S decomposition (H2S → HS* + H* → H2 + S*), a comparative analysis of the results for the decomposition of H2S on the Ti/Ti2CO2 and V/Ti2CO2 surfaces was carried out. The catalytic dissociation behavior of H2S is explained as follows: once H2S is adsorbed on the V/Ti2CO2 or Ti/Ti2CO2 surface, it spontaneously dissociates into HS*/H* without any energy barrier on the catalyst surface. Subsequently, the V atoms would not only promote the cleavage of the H-S bond, but also play a major role in the formation of S atoms. Moreover, the rate-limiting step for the entire process proceeded on the Ti/Ti2CO2 surface with an energy barrier of 0.86 eV, while that for V/Ti2CO2 was 0.28 eV, indicating that the H2S molecules easily dissociated into S and H2 on the V/Ti2CO2 surface at room temperature. The reaction time for H2S decomposition on the V/Ti2CO2 surface at 500 K was 65.79 ns, which was almost two orders of magnitude higher than that at room temperature. Thus, the decomposition of H2S on the V-doped Ti2CO2 surface is associated very fast kinetics. Furthermore, the S atoms can form elemental sulfur with aggregation on the V/Ti2CO2 surface to promote recycling reactions. Compared with previously reported catalytic systems, the single-atom catalyst (SAC) V/Ti2CO2 catalyst has greater application prospects in terms of sustainable economy or removal efficiency for H2S treatment. Our results suggest that V-doped Ti2CO2 is an excellent candidate for a highly effective non-noble metal catalyst applicable to H2S decomposition.
  • 加载中
    1. [1]

      Faye, O.; Eduok, U.; Szpunar, J. A.; Beye, A. C. Phys. E 2020, 117, 113794. doi: 10.1016/j.physe.2019.113794  doi: 10.1016/j.physe.2019.113794

    2. [2]

      Nehaoua, N.; Belkada, R.; Tala-Ighil, R.; Thomas, L.; Mekki, D. E. Mater. Res. Express 2018, 6, 025510. doi: 10.1088/2053-1591/aaedc5  doi: 10.1088/2053-1591/aaedc5

    3. [3]

      Zhang, M.; Fu, Z.; Yu, Y. Appl. Surf. Sci. 2019, 473, 657. doi: 10.1016/j.apsusc.2018.12.133  doi: 10.1016/j.apsusc.2018.12.133

    4. [4]

      Cai, Q.; Wang, F.; He, J.; Dan, M.; Cao, Y.; Yu, S.; Zhou, Y. Appl. Surf. Sci. 2020, 517, 146198. doi: 10.1016/j.apsusc.2020.146198  doi: 10.1016/j.apsusc.2020.146198

    5. [5]

      Ruiz-Rodríguez, L.; Blasco, T.; Rodríguez-Castellón, E.; Nieto, J. M. L. Catal. Today 2019, 333, 237. doi: 10.1016/j.cattod.2018.07.050  doi: 10.1016/j.cattod.2018.07.050

    6. [6]

      Tajizadegan, H.; Rashidzadeh, M.; Jafari, M.; Ebrahimi-Kahrizsangi, R. Chin. Chem. Lett. 2013, 24, 167. doi: 10.1016/j.cclet.2013.01.027  doi: 10.1016/j.cclet.2013.01.027

    7. [7]

      Keshtkar, S.; Rashidi, A.; Kooti, M.; Askarieh, M.; Pourhashem, S.; Ghasemy, E.; Izadi, N. Talanta 2018, 188, 531. doi: 10.1016/j.talanta.2018.05.099  doi: 10.1016/j.talanta.2018.05.099

    8. [8]

      Chowdhuri, A.; Gupta, V.; Sreenivas, K.; Kumar, R.; Mozumdar, S.; Patanjali, P. K. Appl. Phys. Lett. 2004, 84, 1180. doi: 10.1063/1.1646760  doi: 10.1063/1.1646760

    9. [9]

      Mirzaei, A.; Kim, S. S.; Kim, H. W. J. Hazard. Mater. 2018, 357, 314. doi: 10.1016/j.jhazmat.2018.06.015  doi: 10.1016/j.jhazmat.2018.06.015

    10. [10]

      Chen, D.; Zhang, X.; Tang, J.; Fang, J.; Li, Y.; Liu, H. Appl. Phys. A 2018, 124, 404. doi: 10.1007/s00339-018-1827-7  doi: 10.1007/s00339-018-1827-7

    11. [11]

      Jiang, Z.; Qin, P.; Fang, T. Surf. Sci. 2015, 632, 195. doi: 10.1016/j.susc.2014.07.020  doi: 10.1016/j.susc.2014.07.020

    12. [12]

      Bagreev, A.; Menendez, J. A.; Dukhno, I.; Tarasenko, Y.; Bandosz, T. J. Carbon 2004, 42, 469. doi: 10.1016/j.carbon.2003.10.042  doi: 10.1016/j.carbon.2003.10.042

    13. [13]

      Bagreev, A.; Bandosz, T. J. Ind. Eng. Chem. Res. 2005, 44, 530. doi: 10.1021/ie049277o  doi: 10.1021/ie049277o

    14. [14]

      Wang, F.; Wei, S.; Zhang, Z.; Patzke, G. R.; Zhou, Y. Phys. Chem. Chem. Phys. 2016, 18, 6706. doi: 10.1039/c5cp06835e  doi: 10.1039/c5cp06835e

    15. [15]

      Ohtsuka, Y.; Tsubouchi, N.; Kikuchi, T.; Hashimoto, H. Powder Technol. 2009, 190, 340. doi: 10.1016/j.powtec.2008.08.012  doi: 10.1016/j.powtec.2008.08.012

    16. [16]

      De Crisci, A. G.; Moniri, A.; Xu, Y. Int. J. Hydrog. Energy 2019, 44, 1299. doi: 10.1016/j.ijhydene.2018.10.035  doi: 10.1016/j.ijhydene.2018.10.035

    17. [17]

      Reverberi, A. P.; Klemeš, J. J.; Varbanov, P. S.; Fabiano, B. J. Cleaner Product. 2016, 136, 72. doi: 10.1016/j.jclepro.2016.04.139  doi: 10.1016/j.jclepro.2016.04.139

    18. [18]

      Dan, M.; Yu, S.; Li, Y.; Wei, S.; Xiang, J.; Zhou, Y. J. Photochem. Photobiol. C 2020, 142, 100339. doi: 10.1016/j.jphotochemrev.2019.100339  doi: 10.1016/j.jphotochemrev.2019.100339

    19. [19]

      Dang, X.; Huang, J.; Kang, L.; Wu, T.; Zhang, Q. Energy Procedia 2012, 16, 856. doi: 10.1016/j.egypro.2012.01.137  doi: 10.1016/j.egypro.2012.01.137

    20. [20]

      Abbasi, A.; Sardroodi, J. J. Surf. Interface 2017, 8, 15. doi: 10.1016/j.surfin.2017.04.004  doi: 10.1016/j.surfin.2017.04.004

    21. [21]

      Gao, X.; Zhou, Q.; Wang, J.; Xu, L.; Zeng, W. Nanomaterials 2020, 10, 299. doi: 10.3390/nano10020299  doi: 10.3390/nano10020299

    22. [22]

      Khodadadi, Z. Phys. E 2018, 99, 261. doi: 10.1016/j.physe.2018.02.022  doi: 10.1016/j.physe.2018.02.022

    23. [23]

      Zhang, H.; Luo, X.; Song, H.; Lin, X.; Lu, X.; Tang, Y. Appl. Surf. Sci. 2014, 317, 511. doi: 10.1016/j.apsusc.2014.08.141  doi: 10.1016/j.apsusc.2014.08.141

    24. [24]

      Zhao, J.; Pei, Q.; Tao, F. Surf. Sci. 2015, 632, 195. doi: 10.1016/j.susc.2014.07.020  doi: 10.1016/j.susc.2014.07.020

    25. [25]

      Alfonso, D. R.; Cugini, A. V.; Sorescu, D. C. Catal. Today 2005, 99, 315. doi: 10.1016/j.cattod.2004.10.006  doi: 10.1016/j.cattod.2004.10.006

    26. [26]

      Jiang, Z.; Li, M.; Qin, P.; Fang, T. Appl. Surf. Sci. 2014, 311, 40. doi: 10.1016/j.apsusc.2014.04.197  doi: 10.1016/j.apsusc.2014.04.197

    27. [27]

      Yu, Y.; Dixon-Warren, S.; Astle, N. Chem. Phys. Lett. 1999, 312, 455. doi: 10.1016/S0009-2614(99)00846-5  doi: 10.1016/S0009-2614(99)00846-5

    28. [28]

      Zhou, J.; Liu, G.; Jiang, Q.; Zhao, W.; Ao, Z.; An, T. Chin. J. Catal. 2020, 41, 1633. doi: 10.1016/s1872-2067(20)63571-9  doi: 10.1016/s1872-2067(20)63571-9

    29. [29]

      Zhang, X.; Lei, J.; Wu, D.; Zhao, X.; Jing, Y.; Zhou, Z. J. Mater. Chem. A 2016, 4, 4871. doi: 10.1039/c6ta00554c  doi: 10.1039/c6ta00554c

    30. [30]

      Cheng, C.; Zhang, X.; Wang, M.; Wang, S.; Yang, Z. Phys. Chem. Chem. Phys. 2018, 20, 3504. doi: 10.1039/c7cp07161b  doi: 10.1039/c7cp07161b

    31. [31]

      Jiang, Q. G.; Zhang, J. F.; Huang, H. J.; Wu, Y. P.; Ao, Z. M. J. Mater. Chem. A 2020, 8, 287. doi: 10.1039/c9ta08525d  doi: 10.1039/c9ta08525d

    32. [32]

      Jiang, Q. G.; Ao, Z. M.; Li, S.; Wen, Z. RSC Adv. 2014, 4, 20290. doi: 10.1039/c4ra01908c  doi: 10.1039/c4ra01908c

    33. [33]

      Su, Y.; Ao, Z.; Ji, Y.; Li, G.; An, T. Appl. Surf. Sci. 2018, 450, 484. doi: 10.1016/j.apsusc.2018.04.157  doi: 10.1016/j.apsusc.2018.04.157

    34. [34]

      Liu, G.; Zhou, J.; Zhao, W.; Ao, Z.; An, T. Chin. Chem. Lett. 2020, 31, 1966. doi: 10.1016/j.cclet.2019.12.023  doi: 10.1016/j.cclet.2019.12.023

    35. [35]

      Guo, Z.; Zhou, J.; Sun, Z. J. Mater. Chem. A 2017, 5, 23530. doi: 10.1039/c7ta08665b  doi: 10.1039/c7ta08665b

    36. [36]

      Wen, C.; Zhu, T.; Li, X.; Li, H. Chin. Chem. Lett. 2019, 31, 1000. doi: 10.1016/j.cclet.2019.09.028  doi: 10.1016/j.cclet.2019.09.028

    37. [37]

      Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992. doi: 10.1002/adma.201304138  doi: 10.1002/adma.201304138

    38. [38]

      Ran, J.; Gao, G.; Li, F. T.; Ma, T. Y.; Du, A.; Qiao, S. Z. Nat. Commun. 2017, 8, 13907. doi: 10.1038/ncomms13907  doi: 10.1038/ncomms13907

    39. [39]

      Zhang, X.; Zhang, Z.; Li, J.; Zhao, X.; Wu, D.; Zhou, Z. J. Mater. Chem. A 2017, 5, 12899. doi: 10.1039/c7ta03557h  doi: 10.1039/c7ta03557h

    40. [40]

      Wang, S.; Li, J.; Du, L.; Cui, C. Comp. Mater. Sci. 2014, 83, 290. doi: 10.1016/j.commatsci.2013.11.025  doi: 10.1016/j.commatsci.2013.11.025

    41. [41]

      Fredrickson, K. D.; Anasori, B.; Seh, Z. W.; Gogotsi, Y.; Vojvodic, A. J. Phys. Chem. C 2016, 120, 28432. doi: 10.1021/acs.jpcc.6b09109  doi: 10.1021/acs.jpcc.6b09109

    42. [42]

      Yu, X. F.; Li, Y. C.; Cheng, J. B.; Liu, Z. B.; Li, Q. Z.; Li, W. Z.; Yang, X.; Xiao, B. ACS Appl. Mater. Interfaces 2015, 7, 13707. doi: 10.1021/acsami.5b03737  doi: 10.1021/acsami.5b03737

    43. [43]

      Hong Ng, V.; Huang, H.; Zhou, K.; Lee, P. S.; Que, W.; Xu, J. Z.; Kong, L. B. J. Mater. Chem. A 2017, 5, 3039. doi: 10.1039/c6ta06772g  doi: 10.1039/c6ta06772g

    44. [44]

      Lei, J.; Zhang, X.; Zhou, Z. Front. Phy. 2015, 10, 276. doi: 10.1007/s11467-015-0493-x  doi: 10.1007/s11467-015-0493-x

    45. [45]

      Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23, 4248. doi: 10.1002/adma.201102306  doi: 10.1002/adma.201102306

    46. [46]

      Tang, Q.; Zhou, Z.; Shen, P. J. Am. Chem. Soc. 2012, 134, 16909. doi: 10.1021/ja308463r  doi: 10.1021/ja308463r

    47. [47]

      Zhang, H.; Yang, G.; Zuo, X.; Tang, H.; Yang, Q.; Li, G. J. Mater. Chem. A 2016, 4, 12913. doi: 10.1039/c6ta04628b  doi: 10.1039/c6ta04628b

    48. [48]

      Liu, F.; Zhou, A.; Chen, J.; Jia, J.; Zhou, W.; Wang, L.; Hu, Q. Appl. Surf. Sci. 2017, 416, 781. doi: 10.1016/j.apsusc.2017.04.239  doi: 10.1016/j.apsusc.2017.04.239

    49. [49]

      Johnson, L. R.; Sridhar, S.; Zhang, L.; Fredrickson, K. D.; Raman, A. S.; Jang, J.; Leach, C.; Padmanabhan, A.; Price, C. C.; Frey, N. C.; et al. ACS Catal. 2019, 10, 253. doi: 10.1021/acscatal.9b01925  doi: 10.1021/acscatal.9b01925

    50. [50]

      Zhou, S.; Yang, X.; Pei, W.; Liu, N.; Zhao, J. Nanoscale 2018, 10, 10876. doi: 10.1039/c8nr01090k  doi: 10.1039/c8nr01090k

    51. [51]

      Peng, J.; Chen, X.; Ong, W. J.; Zhao, X.; Li, N. Chem 2019, 5, 18. doi: 10.1016/j.chempr.2018.08.037  doi: 10.1016/j.chempr.2018.08.037

    52. [52]

      Parr, R. G.; Bartolotti, L. J. Am. Chem. Soc. 1982, 104, 3801. doi: 10.1021/ja00378a004  doi: 10.1021/ja00378a004

    53. [53]

      Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015  doi: 10.1063/1.1316015

    54. [54]

      John P. Perdew.; Kieron Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    55. [55]

      Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495  doi: 10.1002/jcc.20495

    56. [56]

      Delley, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452  doi: 10.1063/1.458452

    57. [57]

      Delley, B. Phys. Rev. B 2002, 66, 155125. doi: 10.1103/PhysRevB.66.155125  doi: 10.1103/PhysRevB.66.155125

    58. [58]

      Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225. doi: 10.1016/0009-2614(77)80574-5  doi: 10.1016/0009-2614(77)80574-5

    59. [59]

      Henkelman, G. J. Chem. Phys. 2000, 113, 9901. doi: 10.1063/1.1329672  doi: 10.1063/1.1329672

    60. [60]

      Hirshfeld, F. L. Theoret. Claim. Acta 1977, 44, 129. doi: 10.1007/BF00549096  doi: 10.1007/BF00549096

    61. [61]

      Kittel, C. Introduction to Solid State Physics; Wiley: New York, NY, USA; 1976; pp. 48-50.

    62. [62]

      Ling, L.; Zhang, R.; Han, P.; Wang, B. Fuel Process. Technol. 2013, 106, 222. doi: 10.1016/j.fuproc.2012.08.001  doi: 10.1016/j.fuproc.2012.08.001

    63. [63]

      Lin, C.; Qin, W.; Dong, C. Appl. Surf. Sci. 2016, 387, 720. doi: 10.1016/j.apsusc.2016.06.104  doi: 10.1016/j.apsusc.2016.06.104

    64. [64]

      Young, D. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems; Wiley: New York, NY, USA; 2001; pp. 145-158.

  • 加载中
    1. [1]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    4. [4]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    5. [5]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    6. [6]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    7. [7]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    10. [10]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    11. [11]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    16. [16]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    17. [17]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(4)
  • Abstract views(393)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return