DFT Study of the Decomposition Mechanism of H2S on V-Decorated Ti2CO2 Single-Atom Catalyst
- Corresponding author: Ao Zhimin, zhimin.ao@gdut.edu.cn
Citation:
Zhou Junhui, Ao Zhimin, An Taicheng. DFT Study of the Decomposition Mechanism of H2S on V-Decorated Ti2CO2 Single-Atom Catalyst[J]. Acta Physico-Chimica Sinica,
;2021, 37(8): 200708.
doi:
10.3866/PKU.WHXB202007086
Faye, O.; Eduok, U.; Szpunar, J. A.; Beye, A. C. Phys. E 2020, 117, 113794. doi: 10.1016/j.physe.2019.113794
doi: 10.1016/j.physe.2019.113794
Nehaoua, N.; Belkada, R.; Tala-Ighil, R.; Thomas, L.; Mekki, D. E. Mater. Res. Express 2018, 6, 025510. doi: 10.1088/2053-1591/aaedc5
doi: 10.1088/2053-1591/aaedc5
Zhang, M.; Fu, Z.; Yu, Y. Appl. Surf. Sci. 2019, 473, 657. doi: 10.1016/j.apsusc.2018.12.133
doi: 10.1016/j.apsusc.2018.12.133
Cai, Q.; Wang, F.; He, J.; Dan, M.; Cao, Y.; Yu, S.; Zhou, Y. Appl. Surf. Sci. 2020, 517, 146198. doi: 10.1016/j.apsusc.2020.146198
doi: 10.1016/j.apsusc.2020.146198
Ruiz-Rodríguez, L.; Blasco, T.; Rodríguez-Castellón, E.; Nieto, J. M. L. Catal. Today 2019, 333, 237. doi: 10.1016/j.cattod.2018.07.050
doi: 10.1016/j.cattod.2018.07.050
Tajizadegan, H.; Rashidzadeh, M.; Jafari, M.; Ebrahimi-Kahrizsangi, R. Chin. Chem. Lett. 2013, 24, 167. doi: 10.1016/j.cclet.2013.01.027
doi: 10.1016/j.cclet.2013.01.027
Keshtkar, S.; Rashidi, A.; Kooti, M.; Askarieh, M.; Pourhashem, S.; Ghasemy, E.; Izadi, N. Talanta 2018, 188, 531. doi: 10.1016/j.talanta.2018.05.099
doi: 10.1016/j.talanta.2018.05.099
Chowdhuri, A.; Gupta, V.; Sreenivas, K.; Kumar, R.; Mozumdar, S.; Patanjali, P. K. Appl. Phys. Lett. 2004, 84, 1180. doi: 10.1063/1.1646760
doi: 10.1063/1.1646760
Mirzaei, A.; Kim, S. S.; Kim, H. W. J. Hazard. Mater. 2018, 357, 314. doi: 10.1016/j.jhazmat.2018.06.015
doi: 10.1016/j.jhazmat.2018.06.015
Chen, D.; Zhang, X.; Tang, J.; Fang, J.; Li, Y.; Liu, H. Appl. Phys. A 2018, 124, 404. doi: 10.1007/s00339-018-1827-7
doi: 10.1007/s00339-018-1827-7
Jiang, Z.; Qin, P.; Fang, T. Surf. Sci. 2015, 632, 195. doi: 10.1016/j.susc.2014.07.020
doi: 10.1016/j.susc.2014.07.020
Bagreev, A.; Menendez, J. A.; Dukhno, I.; Tarasenko, Y.; Bandosz, T. J. Carbon 2004, 42, 469. doi: 10.1016/j.carbon.2003.10.042
doi: 10.1016/j.carbon.2003.10.042
Bagreev, A.; Bandosz, T. J. Ind. Eng. Chem. Res. 2005, 44, 530. doi: 10.1021/ie049277o
doi: 10.1021/ie049277o
Wang, F.; Wei, S.; Zhang, Z.; Patzke, G. R.; Zhou, Y. Phys. Chem. Chem. Phys. 2016, 18, 6706. doi: 10.1039/c5cp06835e
doi: 10.1039/c5cp06835e
Ohtsuka, Y.; Tsubouchi, N.; Kikuchi, T.; Hashimoto, H. Powder Technol. 2009, 190, 340. doi: 10.1016/j.powtec.2008.08.012
doi: 10.1016/j.powtec.2008.08.012
De Crisci, A. G.; Moniri, A.; Xu, Y. Int. J. Hydrog. Energy 2019, 44, 1299. doi: 10.1016/j.ijhydene.2018.10.035
doi: 10.1016/j.ijhydene.2018.10.035
Reverberi, A. P.; Klemeš, J. J.; Varbanov, P. S.; Fabiano, B. J. Cleaner Product. 2016, 136, 72. doi: 10.1016/j.jclepro.2016.04.139
doi: 10.1016/j.jclepro.2016.04.139
Dan, M.; Yu, S.; Li, Y.; Wei, S.; Xiang, J.; Zhou, Y. J. Photochem. Photobiol. C 2020, 142, 100339. doi: 10.1016/j.jphotochemrev.2019.100339
doi: 10.1016/j.jphotochemrev.2019.100339
Dang, X.; Huang, J.; Kang, L.; Wu, T.; Zhang, Q. Energy Procedia 2012, 16, 856. doi: 10.1016/j.egypro.2012.01.137
doi: 10.1016/j.egypro.2012.01.137
Abbasi, A.; Sardroodi, J. J. Surf. Interface 2017, 8, 15. doi: 10.1016/j.surfin.2017.04.004
doi: 10.1016/j.surfin.2017.04.004
Gao, X.; Zhou, Q.; Wang, J.; Xu, L.; Zeng, W. Nanomaterials 2020, 10, 299. doi: 10.3390/nano10020299
doi: 10.3390/nano10020299
Khodadadi, Z. Phys. E 2018, 99, 261. doi: 10.1016/j.physe.2018.02.022
doi: 10.1016/j.physe.2018.02.022
Zhang, H.; Luo, X.; Song, H.; Lin, X.; Lu, X.; Tang, Y. Appl. Surf. Sci. 2014, 317, 511. doi: 10.1016/j.apsusc.2014.08.141
doi: 10.1016/j.apsusc.2014.08.141
Zhao, J.; Pei, Q.; Tao, F. Surf. Sci. 2015, 632, 195. doi: 10.1016/j.susc.2014.07.020
doi: 10.1016/j.susc.2014.07.020
Alfonso, D. R.; Cugini, A. V.; Sorescu, D. C. Catal. Today 2005, 99, 315. doi: 10.1016/j.cattod.2004.10.006
doi: 10.1016/j.cattod.2004.10.006
Jiang, Z.; Li, M.; Qin, P.; Fang, T. Appl. Surf. Sci. 2014, 311, 40. doi: 10.1016/j.apsusc.2014.04.197
doi: 10.1016/j.apsusc.2014.04.197
Yu, Y.; Dixon-Warren, S.; Astle, N. Chem. Phys. Lett. 1999, 312, 455. doi: 10.1016/S0009-2614(99)00846-5
doi: 10.1016/S0009-2614(99)00846-5
Zhou, J.; Liu, G.; Jiang, Q.; Zhao, W.; Ao, Z.; An, T. Chin. J. Catal. 2020, 41, 1633. doi: 10.1016/s1872-2067(20)63571-9
doi: 10.1016/s1872-2067(20)63571-9
Zhang, X.; Lei, J.; Wu, D.; Zhao, X.; Jing, Y.; Zhou, Z. J. Mater. Chem. A 2016, 4, 4871. doi: 10.1039/c6ta00554c
doi: 10.1039/c6ta00554c
Cheng, C.; Zhang, X.; Wang, M.; Wang, S.; Yang, Z. Phys. Chem. Chem. Phys. 2018, 20, 3504. doi: 10.1039/c7cp07161b
doi: 10.1039/c7cp07161b
Jiang, Q. G.; Zhang, J. F.; Huang, H. J.; Wu, Y. P.; Ao, Z. M. J. Mater. Chem. A 2020, 8, 287. doi: 10.1039/c9ta08525d
doi: 10.1039/c9ta08525d
Jiang, Q. G.; Ao, Z. M.; Li, S.; Wen, Z. RSC Adv. 2014, 4, 20290. doi: 10.1039/c4ra01908c
doi: 10.1039/c4ra01908c
Su, Y.; Ao, Z.; Ji, Y.; Li, G.; An, T. Appl. Surf. Sci. 2018, 450, 484. doi: 10.1016/j.apsusc.2018.04.157
doi: 10.1016/j.apsusc.2018.04.157
Liu, G.; Zhou, J.; Zhao, W.; Ao, Z.; An, T. Chin. Chem. Lett. 2020, 31, 1966. doi: 10.1016/j.cclet.2019.12.023
doi: 10.1016/j.cclet.2019.12.023
Guo, Z.; Zhou, J.; Sun, Z. J. Mater. Chem. A 2017, 5, 23530. doi: 10.1039/c7ta08665b
doi: 10.1039/c7ta08665b
Wen, C.; Zhu, T.; Li, X.; Li, H. Chin. Chem. Lett. 2019, 31, 1000. doi: 10.1016/j.cclet.2019.09.028
doi: 10.1016/j.cclet.2019.09.028
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992. doi: 10.1002/adma.201304138
doi: 10.1002/adma.201304138
Ran, J.; Gao, G.; Li, F. T.; Ma, T. Y.; Du, A.; Qiao, S. Z. Nat. Commun. 2017, 8, 13907. doi: 10.1038/ncomms13907
doi: 10.1038/ncomms13907
Zhang, X.; Zhang, Z.; Li, J.; Zhao, X.; Wu, D.; Zhou, Z. J. Mater. Chem. A 2017, 5, 12899. doi: 10.1039/c7ta03557h
doi: 10.1039/c7ta03557h
Wang, S.; Li, J.; Du, L.; Cui, C. Comp. Mater. Sci. 2014, 83, 290. doi: 10.1016/j.commatsci.2013.11.025
doi: 10.1016/j.commatsci.2013.11.025
Fredrickson, K. D.; Anasori, B.; Seh, Z. W.; Gogotsi, Y.; Vojvodic, A. J. Phys. Chem. C 2016, 120, 28432. doi: 10.1021/acs.jpcc.6b09109
doi: 10.1021/acs.jpcc.6b09109
Yu, X. F.; Li, Y. C.; Cheng, J. B.; Liu, Z. B.; Li, Q. Z.; Li, W. Z.; Yang, X.; Xiao, B. ACS Appl. Mater. Interfaces 2015, 7, 13707. doi: 10.1021/acsami.5b03737
doi: 10.1021/acsami.5b03737
Hong Ng, V.; Huang, H.; Zhou, K.; Lee, P. S.; Que, W.; Xu, J. Z.; Kong, L. B. J. Mater. Chem. A 2017, 5, 3039. doi: 10.1039/c6ta06772g
doi: 10.1039/c6ta06772g
Lei, J.; Zhang, X.; Zhou, Z. Front. Phy. 2015, 10, 276. doi: 10.1007/s11467-015-0493-x
doi: 10.1007/s11467-015-0493-x
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23, 4248. doi: 10.1002/adma.201102306
doi: 10.1002/adma.201102306
Tang, Q.; Zhou, Z.; Shen, P. J. Am. Chem. Soc. 2012, 134, 16909. doi: 10.1021/ja308463r
doi: 10.1021/ja308463r
Zhang, H.; Yang, G.; Zuo, X.; Tang, H.; Yang, Q.; Li, G. J. Mater. Chem. A 2016, 4, 12913. doi: 10.1039/c6ta04628b
doi: 10.1039/c6ta04628b
Liu, F.; Zhou, A.; Chen, J.; Jia, J.; Zhou, W.; Wang, L.; Hu, Q. Appl. Surf. Sci. 2017, 416, 781. doi: 10.1016/j.apsusc.2017.04.239
doi: 10.1016/j.apsusc.2017.04.239
Johnson, L. R.; Sridhar, S.; Zhang, L.; Fredrickson, K. D.; Raman, A. S.; Jang, J.; Leach, C.; Padmanabhan, A.; Price, C. C.; Frey, N. C.; et al. ACS Catal. 2019, 10, 253. doi: 10.1021/acscatal.9b01925
doi: 10.1021/acscatal.9b01925
Zhou, S.; Yang, X.; Pei, W.; Liu, N.; Zhao, J. Nanoscale 2018, 10, 10876. doi: 10.1039/c8nr01090k
doi: 10.1039/c8nr01090k
Peng, J.; Chen, X.; Ong, W. J.; Zhao, X.; Li, N. Chem 2019, 5, 18. doi: 10.1016/j.chempr.2018.08.037
doi: 10.1016/j.chempr.2018.08.037
Parr, R. G.; Bartolotti, L. J. Am. Chem. Soc. 1982, 104, 3801. doi: 10.1021/ja00378a004
doi: 10.1021/ja00378a004
Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015
doi: 10.1063/1.1316015
John P. Perdew.; Kieron Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
doi: 10.1103/PhysRevLett.77.3865
Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495
doi: 10.1002/jcc.20495
Delley, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452
doi: 10.1063/1.458452
Delley, B. Phys. Rev. B 2002, 66, 155125. doi: 10.1103/PhysRevB.66.155125
doi: 10.1103/PhysRevB.66.155125
Halgren, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225. doi: 10.1016/0009-2614(77)80574-5
doi: 10.1016/0009-2614(77)80574-5
Henkelman, G. J. Chem. Phys. 2000, 113, 9901. doi: 10.1063/1.1329672
doi: 10.1063/1.1329672
Hirshfeld, F. L. Theoret. Claim. Acta 1977, 44, 129. doi: 10.1007/BF00549096
doi: 10.1007/BF00549096
Kittel, C. Introduction to Solid State Physics; Wiley: New York, NY, USA; 1976; pp. 48-50.
Ling, L.; Zhang, R.; Han, P.; Wang, B. Fuel Process. Technol. 2013, 106, 222. doi: 10.1016/j.fuproc.2012.08.001
doi: 10.1016/j.fuproc.2012.08.001
Lin, C.; Qin, W.; Dong, C. Appl. Surf. Sci. 2016, 387, 720. doi: 10.1016/j.apsusc.2016.06.104
doi: 10.1016/j.apsusc.2016.06.104
Young, D. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems; Wiley: New York, NY, USA; 2001; pp. 145-158.
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037