Microscopic Mechanism on Giant Photoeffect in Proton Transport Through Graphene Membranes

Liming Guan Beidou Guo Xinrui Jia Guancai Xie Jian Ru Gong

Citation:  Guan Liming, Guo Beidou, Jia Xinrui, Xie Guancai, Gong Jian Ru. Microscopic Mechanism on Giant Photoeffect in Proton Transport Through Graphene Membranes[J]. Acta Physico-Chimica Sinica, 2021, 37(11): 200706. doi: 10.3866/PKU.WHXB202007067 shu

石墨烯膜质子传输巨大光效应的微观机理

    通讯作者: 宫建茹, gongjr@nanoctr.cn
  • 基金项目:

    国家重点研发项目 2016YFA0201600

    中科院战略重点研究项目(XDB36030000), 国家自然科学基金项目(21422303, 21573049, 21872043), 国家重点研发项目(2016YFA0201600), 北京自然科学基金项目(2142036), 中国科学院青年创新促进会及中国科学院“一带一路”专项资助

    国家自然科学基金项目 21422303

    国家自然科学基金项目 21573049

    北京自然科学基金项目 2142036

    中科院战略重点研究项目 XDB36030000

    国家自然科学基金项目 21872043

摘要: 单层石墨烯已被证明对质子是可渗透的,而对其它原子和分子不可渗透,这一特性在燃料电池和氢同位素分离等方面具有潜在的应用。Geim等人报道了催化活化石墨烯膜质子传输的巨大光效应。其实验表明,光照和具有催化活性金属纳米颗粒的协同作用在这种光效应中起关键作用。Geim等人认为巨大光效应是由金属纳米颗粒和石墨烯之间产生的局部光电压引起的。局部光电压将质子和电子传送至金属纳米颗粒以产生氢气,同时将空穴排斥使之远离。但是,根据静电场理论,这种解释并不能令人信服,并且在他们的工作中也没有此效应的微观机理分析。我们在此文中提出了一种该现象背后的确切微观机制。对于具有半金属性质的石墨烯,光激发的大多数热电子会在皮秒时间内驰豫到较低的能态,而发生化学反应所需的时间一般为纳秒范围。因此,在单一石墨烯的情况下,入射光激发的热电子在与透过石墨烯的质子反应之前就已驰豫到较低的能态。当用金属粒子修饰石墨烯时,由功函数不同引起的电子转移会导致界面偶极子的形成。当金属为可与石墨烯具有相互强烈作用的Pt、Pd、Ni等时,就会形成局部偶极子。质子将被俘获在局部偶极子的负极周围,而电子则被俘获在正极附近。在光照射后,被俘获的电子会被激发到具有更高能级的亚稳激发态。处于高活化能的亚稳激发态的自由电子具有更长的寿命,使得它有更充分的时间与透过石墨烯的质子发生化学反应。对光照情况下高能电子的浓度的计算结果显示,光照越强时被激发到激发态的电子越多。根据本文的分析,质子通过催化活化石墨烯膜的巨大光效应归因于较长寿命的热载流子和快速的质子传输速率。因为这一反应的活化能没有变化, 所以金属催化剂是通过增加反应物之间成功碰撞的次数来增大反应速率,从而产生显著的光效应。该工作可能揭示了催化剂在提高光(电)催化反应效率方面的一种新微观机制。

English

    1. [1]

      Achtyl, J. L.; Unocic, R. R.; Xu, L.; Cai, Y.; Raju, M.; Zhang, W.; Sacci, R. L.; Vlassiouk, I. V.; Fulvio, P. F.; Ganesh, P.; et al. Nat. Commun. 2015, 6, 6539. doi: 10.1038/ncomms7539

    2. [2]

      Hu, S.; Lozada-Hidalgo, M.; Wang, F. C.; Mishchenko, A.; Schedin, F.; Nair, R. R.; Hill, E. W.; Boukhvalov, D. W.; Katsnelson, M. I.; Dryfe, R. A.; et al. Nature 2014, 516, 227. doi: 10.1038/nature14015

    3. [3]

      Lozada-Hidalgo, M.; Hu, S.; Marshall, O.; Mishchenko, A.; Grigorenko, A. N.; Dryfe, R. A.; Radha, B.; Grigorieva, I. V.; Geim, A. K. Science 2016, 351, 68. doi: 10.1126/science.aac9726

    4. [4]

      Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K. Nat. Commun. 2017, 8, 15215. doi: 10.1038/ncomms15215

    5. [5]

      Kroes, J. M.; Fasolino, A.; Katsnelson, M. I. Phys. Chem. Chem. Phys. 2017, 19, 5813. doi: 10.1039/c6cp08923b

    6. [6]

      Seel, M.; Pandey, R. 2D Materials 2016, 3, 025004. doi: 10.1088/2053-1583/3/2/025004

    7. [7]

      Shi, L.; Xu, A.; Chen, G.; Zhao, T. J. Phys. Chem. Lett. 2017, 8, 4354. doi: 10.1021/acs.jpclett.7b01999

    8. [8]

      Bartolomei, M.; Hernández, M. I.; Campos-Martínez, J.; Hernández-Lamoneda, R. Carbon 2019, 144, 724. doi: 10.1016/j.carbon.2018.12.086

    9. [9]

      Feng, Y.; Chen, J.; Fang, W.; Wang, E. G.; Michaelides, A.; Li, X. J. Phys. Chem. Lett. 2017, 8, 6009. doi: 10.1021/acs.jpclett.7b02820

    10. [10]

      Poltavsky, I.; Zheng, L.; Mortazavi, M.; Tkatchenko, A. J. Chem. Phys. 2018, 148, 204707. doi: 10.1063/1.5024317

    11. [11]

      Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Kravets, V. G.; Rodriguez, F. J.; Berdyugin, A.; Grigorenko, A.; Geim, A. K. Nat. Nanotechnol. 2018, 13, 300. doi: 10.1038/s41565-017-0051-5

    12. [12]

      Linic, S.; Christopher, P.; Ingram, D. B. Nat. Mater. 2011, 10, 911. doi: 10.1038/nmat3151

    13. [13]

      Brongersma, M. L.; Halas, N. J.; Nordlander, P. Nat. Nanotechnol. 2015, 10, 25. doi: 10.1038/nnano.2014.311

    14. [14]

      Miao, M.; Nardelli, M. B.; Wang, Q.; Liu, Y. Phys. Chem. Chem. Phys. 2013, 15, 16132. doi: 10.1039/c3cp52318g

    15. [15]

      Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Nano Lett. 2008, 8, 2458. doi: 10.1021/nl801457b

    16. [16]

      Xia, F.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Nat. Nanotechnol. 2009, 4, 839. doi: 10.1038/nnano.2009.292

    17. [17]

      Gimbert-Surinach, C.; Albero, J.; Stoll, T.; Fortage, J.; Collomb, M. N.; Deronzier, A.; Palomares, E.; Llobet, A. J. Am. Chem. Soc. 2014, 136, 7655. doi: 10.1021/ja501489h

    18. [18]

      Hisatomi, T.; Takanabe, K.; Domen, K. Catal. Lett. 2014, 145, 95. doi: 10.1007/s10562-014-1397-z

    19. [19]

      Kronik, L. Surf. Sci. Rep. 1999, 37, 1. doi: 10.1016/s0167-5729(99)00002-3

    20. [20]

      Moglestue, C. J. Appl. Phys. 1986, 59, 3175. doi: 10.1063/1.336898.

    21. [21]

      Gong, C.; Lee, G.; Shan, B.; Vogel, E. M.; Wallace, R. M.; Cho, K. J. Appl. Phys. 2010, 108, 123711. doi: 10.1063/1.3524232

    22. [22]

      Zhu, H.; Zhou, C.; Wu, Y.; Lin, W.; Yang, W.; Cheng, Z.; Cai, X. Surf. Sci. 2017, 661, 1. doi: 10.1016/j.susc.2017.02.013

    23. [23]

      Zhang, H. X.; Zhu, Y. F.; Zhao, M. Appl. Surf. Sci. 2017, 420, 105. doi: 10.1016/j.apsusc.2017.05.142

    24. [24]

      Xie, G.; Guan, L.; Zhang, L.; Guo, B.; Batool, A.; Xin, Q.; Boddula, R.; Jan, S. U.; Gong, J. R. Nano Lett. 2019, 19, 1234. doi: 10.1021/acs.nanolett.8b04768

    25. [25]

      Tung, R. T. Phys. Rev. B 2001, 64, 205310. doi: 10.1103/PhysRevB.64.205310

    26. [26]

      Ran, Q.; Gao, M.; Guan, X.; Wang, Y.; Yu, Z. Appl. Phys. Lett. 2009, 94, 103511. doi: 10.1063/1.3095438

    27. [27]

      Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. Phys. Rev. B 2009, 79, 195425. doi: 10.1103/PhysRevB.79.195425

    28. [28]

      Hupalo, M.; Liu, X.; Wang, C. Z.; Lu, W. C.; Yao, Y. X.; Ho, K. M.; Tringides, M. C. Adv. Mater. 2011, 23, 2082. doi: 10.1002/adma.201100412

    29. [29]

      Gong, C.; Hinojos, D.; Wang, W.; Nijem, N.; Shan, B.; Wallace, R. M.; Cho, K.; Chabal, Y. J. ACS Nano 2012, 6, 5381. doi: 10.1021/nn301241p

    30. [30]

      Pandey, P. A.; Bell, G. R.; Rourke, J. P.; Sanchez, A. M.; Elkin, M. D.; Hickey, B. J.; Wilson, N. R. Small 2011, 7, 3202. doi: 10.1002/smll.201101430

    31. [31]

      Lenz Baldez, R. N.; Piquini, P.; Schmidt, A. A.; Kuroda, M. A. Phys. Chem. Chem. Phys. 2017, 19, 22153. doi: 10.1039/c7cp04615d

    32. [32]

      Mittendorfer, F.; Garhofer, A.; Redinger, J.; Klimeš, J.; Harl, J.; Kresse, G. Phys. Rev. B 2011, 84, 201401. doi: 10.1103/PhysRevB.84.201401

    33. [33]

      Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; van den Brink, J.; Kelly, P. J. Phys. Rev. Lett. 2008, 101, 026803. doi: 10.1103/PhysRevLett.101.026803

    34. [34]

      Jaynes, E. T.; Cummings, F. W. Proc. IEEE 1963, 51, 89. doi: 10.1109/proc.1963.1664

    35. [35]

      Sheldon, M. T.; van de Groep, J.; Brown, A. M.; Polman, A.; Atwater, H. A. Science 2014, 346, 828. doi: 10.1126/science.1258405

    36. [36]

      Sobhani, A.; Knight, M. W.; Wang, Y.; Zheng, B.; King, N. S.; Brown, L. V.; Fang, Z.; Nordlander, P.; Halas, N. J. Nat. Commun. 2013, 4, 1643. doi: 10.1038/ncomms2642

    37. [37]

      Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Nat. Mater. 2010, 9, 193. doi: 10.1038/nmat2630

    38. [38]

      Xu, Y. F.; Rao, H. S.; Chen, B. X.; Lin, Y.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Adv. Sci. 2015, 2, 1500049. doi: 10.1002/advs.201500049

    39. [39]

      Wang, W.; Guo, B.; Dai, H.; Zhao, C.; Xie, G.; Ma, R.; Akram, M. Z.; Shan, H.; Cai, C.; Fang, Z.; et al. Nano Lett. 2019, 19, 6133. doi: 10.1021/acs.nanolett.9b02122

    40. [40]

      Bistritzer, R.; MacDonald, A. H. Phys. Rev. Lett. 2009, 102, 206410. doi: 10.1103/PhysRevLett.102.206410

    41. [41]

      Winzer, T.; Knorr, A.; Malic, E. Nano Lett. 2010, 10, 4839. doi: 10.1021/nl1024485

    42. [42]

      Song, J. C.; Rudner, M. S.; Marcus, C. M.; Levitov, L. S. Nano Lett. 2011, 11, 4688. doi: 10.1021/nl202318u

    43. [43]

      Gabor, N. M.; Song, J. C.; Ma, Q.; Nair, N. L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Science 2011, 334, 648. doi: 10.1126/science.1211384

    44. [44]

      Tielrooij, K. J.; Piatkowski, L.; Massicotte, M.; Woessner, A.; Ma, Q.; Lee, Y.; Myhro, K. S.; Lau, C. N.; Jarillo-Herrero, P.; van Hulst, N. F.; et al. Nat. Nanotechnol. 2015, 10, 437. doi: 10.1038/nnano.2015.54

    45. [45]

      Sun, D.; Aivazian, G.; Jones, A. M.; Ross, J. S.; Yao, W.; Cobden, D.; Xu, X. Nat. Nanotechnol. 2012, 7, 114. doi: 10.1038/nnano.2011.243

    46. [46]

      Park, J.; Ahn, Y. H.; Ruiz-Vargas, C. Nano Lett. 2009, 9, 1742. doi: 10.1021/nl8029493

    47. [47]

      Mueller, T.; Xia, F.; Avouris, P. Nat. Photonics 2010, 4, 297. doi: 10.1038/nphoton.2010.40

    48. [48]

      Nazin, G.; Zhang, Y.; Zhang, L.; Sutter, E.; Sutter, P. Nat. Phys. 2010, 6, 870. doi: 10.1038/nphys1745

    49. [49]

      Xu, X.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; McEuen, P. L. Nano Lett. 2010, 10, 562. doi: 10.1021/nl903451y

    50. [50]

      Lemme, M. C.; Koppens, F. H.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M. Nano Lett. 2011, 11, 4134. doi: 10.1021/nl2019068

    51. [51]

      Wang, D.; Sheng, T.; Chen, J.; Wang, H. F.; Hu, P. Nat. Catal. 2018, 1, 291. doi: 10.1038/s41929-018-0055-z

    52. [52]

      Xie, G.; Zhang, K.; Guo, B.; Liu, Q.; Fang, L.; Gong, J. R. Adv. Mater. 2013, 25, 3820. doi: 10.1002/adma.201301207

    53. [53]

      Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326

    54. [54]

      Du, C.; Yang, X.; Mayer, M. T.; Hoyt, H.; Xie, J.; McMahon, G.; Bischoping, G.; Wang, D. Angew. Chem. Int. Ed. 2013, 52, 12692. doi: 10.1002/anie.201306263

    55. [55]

      Waegele, M. M.; Gunathunge, C. M.; Li, J.; Li, X. J. Chem. Phys. 2019, 151, 160902. doi: 10.1063/1.5124878

    56. [56]

      Ali, H.; Golnak, R.; Seidel, R.; Winter, B.; Xiao, J. ACS Appl. Nano Mater. 2019, 3, 264. doi: 10.1021/acsanm.9b01939

  • 加载中
计量
  • PDF下载量:  16
  • 文章访问数:  1426
  • HTML全文浏览量:  322
文章相关
  • 发布日期:  2021-11-15
  • 收稿日期:  2020-07-25
  • 接受日期:  2020-09-07
  • 修回日期:  2020-09-04
  • 网络出版日期:  2020-09-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章