Citation: Yuecheng Xiong, Fei Yu, Jie Ma. Research Progress in Chlorine Ion Removal Electrodes for Desalination by Capacitive Deionization[J]. Acta Physico-Chimica Sinica, ;2022, 38(5): 200603. doi: 10.3866/PKU.WHXB202006037 shu

Research Progress in Chlorine Ion Removal Electrodes for Desalination by Capacitive Deionization

  • Corresponding author: Jie Ma, jma@tongji.edu.cn
  • Received Date: 12 June 2020
    Revised Date: 2 July 2020
    Accepted Date: 7 July 2020
    Available Online: 13 July 2020

    Fund Project: the National Natural Science Foundation of China 21777118

  • Sustainable freshwater supply is a grave challenge to the society because of the severe water scarcity and global pollution. Seawater is an inexhaustible source of industrial and potable water. The relevant desalination technologies with a high market share include reverse osmosis and thermal distillation, which are energy-intensive. Capacitive deionization (CDI) is a desalination technology that is gaining extensive attention because of its low energy consumption and low chemical intensity. In CDI, charged species are removed from the aqueous environment via applying a voltage onto the anode and cathode. For desalination, Na+ and Cl- ions are removed by the cathode and anode, respectively. With the boom in electrode materials for rechargeable batteries, the Na+ removal electrode (cathode) has evolved from a carbon-based electrode to a faradaic electrode, and the desalination performance of CDI has also been significantly enhanced. A conventional carbon-based electrode captures ions in the electrical double layer (EDL) and suffers from low charge efficiency, thus being unsuitable for use in water with high salinity. On the other hand, a faradaic electrode stores Na+ ions through a reversible redox process or intercalation, leading to high desalination capacity.However, the Cl- removal electrode (anode) has not yet seen notable development. Most research groups employ activated carbon to remove Cl-, and therefore, summarizing Cl- storage electrodes for CDI is necessary to guide the design of electrode systems with better desalination performance. First, this review outlines the evolution of CDI configuration based on the electrode materials, suggesting that the anode and cathode are of equal importance in CDI. Second, a systematic summary of the anode materials used in CDI and a comparison of the characteristics of different electrodes, including those based on Ag/AgCl, Bi/BiOCl, 2-dimensional (2D) materials (layered double hydroxide (LDH) and MXene), redox polymers, and electrolytes, are presented. Then, the underlying mechanism for Cl- storage is refined. Similar to the case of Na+ storage, traditional carbon electrodes store Cl- via electrosorption based on the EDL. Ag/AgCl and Bi/BiOCl remove Cl- through a conversion reaction, i.e., phase transformation during the reaction with Cl-. 2D materials store Cl- in the space between adjacent layers, a process referred as ion intercalation, with layered double hydroxide (LDH) and MXene showing higher Cl- storage potential. Redox polymers and electrolytes allow for Cl- storage via redox reactions. Among all the materials mentioned above, Bi/BiOCl and LDH are the most promising for the construction of CDI anodes because of their high capacity and low cost. Finally, to spur the development of novel anodes for CDI, the electrodes applied in a chlorine ion battery are introduced. This is the first paper to comb through reports on the development of anode materials for CDI, thus laying the theoretical foundation for future materials design.
  • 加载中
    1. [1]

      Hoekstra, A. Y.; Mekonnen, M. M.; Chapagain, A. K.; Mathews, R. E.; Richter, B. D. PLoS One 2012, 7, e32688. doi: 10.1371/journal.pone.0032688  doi: 10.1371/journal.pone.0032688

    2. [2]

      Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. doi: 10.1038/nature06599  doi: 10.1038/nature06599

    3. [3]

      Subramani, A.; Jacangelo, J. G. Water Res. 2015, 75, 164. doi: 10.1016/j.watres.2015.02.032  doi: 10.1016/j.watres.2015.02.032

    4. [4]

      Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M. Prog. Mater. Sci. 2013, 58, 1388. doi: 10.1016/j.pmatsci.2013.03.005  doi: 10.1016/j.pmatsci.2013.03.005

    5. [5]

      Tan, C.; He, C.; Fletcher, J.; Waite, T. D. Water Res. 2020, 168, 115146. doi: 10.1016/j.watres.2019.115146  doi: 10.1016/j.watres.2019.115146

    6. [6]

      Zhou, X.; Zhao, F.; Guo, Y.; Zhang, Y.; Yu, G. Energy Environ. Sci. 2018, 11, 1985. doi: 10.1039/c8ee00567b  doi: 10.1039/c8ee00567b

    7. [7]

      Liu, Y.; Jiang, Z.; Zhang, X.; Shen, P. K. J. Mater. Chem. A 2018, 6, 20037. doi: 10.1039/c8ta07587e  doi: 10.1039/c8ta07587e

    8. [8]

      Suss, M. E.; Porada, S.; Sun, X.; Biesheuvel, P. M.; Yoon, J.; Presser, V. Energy Environ. Sci. 2015, 8, 2296. doi: 10.1039/c5ee00519a  doi: 10.1039/c5ee00519a

    9. [9]

      Cao, J.; Wang, Y.; Chen, C.; Yu, F.; Ma, J. J. Colloid Interface Sci. 2018, 518, 69. doi: 10.1016/j.jcis.2018.02.019  doi: 10.1016/j.jcis.2018.02.019

    10. [10]

      Ma, J.; Wang, L.; Yu, F. Electrochim. Acta 2018, 263, 40. doi: 10.1016/j.electacta.2018.01.041  doi: 10.1016/j.electacta.2018.01.041

    11. [11]

      Suss, M. E.; Presser, V. Joule 2018, 2, 10. doi: 10.1016/j.joule.2017.12.010  doi: 10.1016/j.joule.2017.12.010

    12. [12]

      Zhang, C.; He, D.; Ma, J.; Tang, W.; Waite, T. D. Water Res. 2018, 128, 314. doi: 10.1016/j.watres.2017.10.024  doi: 10.1016/j.watres.2017.10.024

    13. [13]

      Yu, F.; Wang, L.; Wang, Y.; Shen, X.; Cheng, Y.; Ma, J. J. Mater. Chem. A 2019, 7, 15999. doi: 10.1039/c9ta01264h  doi: 10.1039/c9ta01264h

    14. [14]

      Ma, J.; Xiong, Y.; Dai, X.; Yu, F. Environ. Sci. Technol. Lett. 2020, 7, 118. doi: 10.1021/acs.estlett.0c00027  doi: 10.1021/acs.estlett.0c00027

    15. [15]

      Pasta, M.; Wessells, C. D.; Cui, Y.; La Mantia, F. Nano Lett. 2012, 12, 839. doi: 10.1021/nl203889e  doi: 10.1021/nl203889e

    16. [16]

      Cao, J.; Wang, Y.; Wang, L.; Yu, F.; Ma, J. Nano Lett. 2019, 19, 823. doi: 10.1021/acs.nanolett.8b04006  doi: 10.1021/acs.nanolett.8b04006

    17. [17]

      Wang, K.; Liu, Y.; Ding, Z.; Li, Y.; Lu, T.; Pan, L. J. Mater. Chem. A 2019, 7, 12126. doi: 10.1039/c9ta01106d  doi: 10.1039/c9ta01106d

    18. [18]

      Ma, J.; Wang, L.; Yu, F.; Dai, X. Chem. Eng. J. 2019, 370, 938. doi: 10.1016/j.cej.2019.03.243  doi: 10.1016/j.cej.2019.03.243

    19. [19]

      Ding, Z.; Xu, X.; Li, Y.; Wang, K.; Lu, T.; Pan, L. Desalination 2019, 468, 114078. doi: 10.1016/j.desal.2019.114078  doi: 10.1016/j.desal.2019.114078

    20. [20]

      Zhao, Y.; Liang, B.; Wei, X.; Li, K.; Lv, C.; Zhao, Y. J. Mater. Chem. A 2019, 7, 10464. doi: 10.1039/c8ta12433g  doi: 10.1039/c8ta12433g

    21. [21]

      Yin, H.; Zhao, S.; Wan, J.; Tang, H.; Chang, L.; He, L.; Zhao, H.; Gao, Y.; Tang, Z. Adv. Mater. 2013, 25, 6270. doi: 10.1002/adma.201302223  doi: 10.1002/adma.201302223

    22. [22]

      Lee, J.; Kim, S.; Kim, C.; Yoon, J. Energy Environ. Sci. 2014, 7, 3683. doi: 10.1039/c4ee02378a  doi: 10.1039/c4ee02378a

    23. [23]

      Chen, F.; Huang, Y.; Guo, L.; Ding, M.; Yang, H. Y. Nanoscale 2017, 9, 10101. doi: 10.1039/c7nr01861d  doi: 10.1039/c7nr01861d

    24. [24]

      Nam, D. H.; Choi, K. S. J. Am. Chem. Soc. 2017, 139, 11055. doi: 10.1021/jacs.7b01119  doi: 10.1021/jacs.7b01119

    25. [25]

      Chen, F.; Huang, Y.; Guo, L.; Sun, L.; Wang, Y.; Yang, H. Y. Energy Environ. Sci. 2017, 10, 2081. doi: 10.1039/c7ee00855d  doi: 10.1039/c7ee00855d

    26. [26]

      Biesheuvel, P. M.; van der Wal, A. J. Membr. Sci. 2010, 346, 256. doi: 10.1016/j.memsci.2009.09.043  doi: 10.1016/j.memsci.2009.09.043

    27. [27]

      Wu, T.; Wang, G.; Wang, S.; Zhan, F.; Fu, Y.; Qiao, H.; Qiu, J. Environ. Sci. Technol. Let. 2018, 5, 98. doi: 10.1021/acs.estlett.7b00540  doi: 10.1021/acs.estlett.7b00540

    28. [28]

      Xi, W.; Li, H. Environ. Sci. Nano 2020, 7, 764. doi: 10.1039/c9en01238a  doi: 10.1039/c9en01238a

    29. [29]

      Smith, K. C. Electrochim. Acta 2017, 230, 333. doi: 10.1016/j.electacta.2017.02.006  doi: 10.1016/j.electacta.2017.02.006

    30. [30]

      Arulrajan, A. C.; Ramasamy, D. L.; Sillanpaa, M.; van der Wal, A.; Biesheuvel, P. M.; Porada, S.; Dykstra, J. E. Adv. Mater. 2019, 31, e1806937. doi: 10.1002/adma.201806937  doi: 10.1002/adma.201806937

    31. [31]

      Huang, Z. H.; Yang, Z.; Kang, F.; Inagaki, M. J. Mater. Chem. A 2017, 5, 470. doi: 10.1039/c6ta06733f  doi: 10.1039/c6ta06733f

    32. [32]

      Wang, L.; Yu, F.; Ma, J. Acta Phys. -Chim. Sin. 2017, 33, 1338.  doi: 10.3866/PKU.WHXB201704113

    33. [33]

      Liu, Y.; Nie, C.; Liu, X.; Xu, X.; Sun, Z.; Pan, L. RSC Adv. 2015, 5, 15205. doi: 10.1039/c4ra14447c  doi: 10.1039/c4ra14447c

    34. [34]

      Tang, K.; Hong, T. Z. X.; You, L.; Zhou, K. J. Mater. Chem. A 2019, 7, 26693. doi: 10.1039/c9ta08663c  doi: 10.1039/c9ta08663c

    35. [35]

      Srimuk, P.; Su, X.; Yoon, J.; Aurbach, D.; Presser, V. Nat. Rev. Mater. 2020, 5, 517. doi: 10.1038/s41578-020-0193-1  doi: 10.1038/s41578-020-0193-1

    36. [36]

      Sun, Z.; Chai, L.; Liu, M.; Shu, Y.; Li, Q.; Wang, Y.; Wang, Q.; Qiu, D. Sep. Purif. Technol. 2018, 191, 424. doi: 10.1016/j.seppur.2017.09.015  doi: 10.1016/j.seppur.2017.09.015

    37. [37]

      Zhao, W.; Guo, L.; Ding, M.; Huang, Y.; Yang, H. Y. ACS Appl. Mater. Interfaces 2018, 10, 40540. doi: 10.1021/acsami.8b14014  doi: 10.1021/acsami.8b14014

    38. [38]

      Zhao, W.; Ding, M.; Guo, L.; Yang, H. Y. Small 2019, 15, 1805505. doi: 10.1002/smll.201805505  doi: 10.1002/smll.201805505

    39. [39]

      Yue, Z.; Ma, Y.; Zhang, J.; Li, H. J. Mater. Chem. A 2019, 7, 16892. doi: 10.1039/c9ta03570b  doi: 10.1039/c9ta03570b

    40. [40]

      Srimuk, P.; Husmann, S.; Presser, V. RSC Adv. 2019, 9, 14849. doi: 10.1039/c9ra02570g  doi: 10.1039/c9ra02570g

    41. [41]

      Ahn, J.; Lee, J.; Kim, S.; Kim, C.; Lee, J.; Biesheuvel, P. M.; Yoon, J. Desalination 2020, 476, 114216. doi: 10.1016/j.desal.2019.114216  doi: 10.1016/j.desal.2019.114216

    42. [42]

      Min, X.; Zhu, M.; He, Y.; Wang, Y.; Deng, H.; Wang, S.; Jin, L.; Wang, H.; Zhang, L.; Chai, L. Chemosphere 2020, 251, 126319. doi: 10.1016/j.chemosphere.2020.126319  doi: 10.1016/j.chemosphere.2020.126319

    43. [43]

      Kong, H.; Yang, M.; Miao, Y.; Zhao, X. Energy Technol. 2019, 7, 1900835. doi: 10.1002/ente.201900835  doi: 10.1002/ente.201900835

    44. [44]

      Li, D.; Wang, S.; Wang, G.; Li, C.; Che, X.; Wang, S.; Zhang, Y.; Qiu, J. ACS Appl. Mater. Interfaces 2019, 11, 31200. doi: 10.1021/acsami.9b10307  doi: 10.1021/acsami.9b10307

    45. [45]

      Srimuk, P.; Kaasik, F.; Krüner, B.; Tolosa, A.; Fleischmann, S.; Jäckel, N.; Tekeli, M. C.; Aslan, M.; Suss, M. E.; Presser, V. J. Mater. Chem. A 2016, 4, 18265. doi: 10.1039/c6ta07833h  doi: 10.1039/c6ta07833h

    46. [46]

      Khan, A. I.; O'Hare, D. J. Mater. Chem. 2002, 12, 3191. doi: 10.1039/b204076j  doi: 10.1039/b204076j

    47. [47]

      Long, X.; Wang, Z.; Xiao, S.; An, Y.; Yang, S. Mater. Today 2016, 19, 213. doi: 10.1016/j.mattod.2015.10.006  doi: 10.1016/j.mattod.2015.10.006

    48. [48]

      Lv, L.; Yang, Z.; Chen, K.; Wang, C.; Xiong, Y. Adv. Energy Mater. 2019, 9, 1803358. doi: 10.1002/aenm.201803358  doi: 10.1002/aenm.201803358

    49. [49]

      Wang, Q.; O'Hare, D. Chem. Rev. 2012, 112, 4124. doi: 10.1021/cr200434v  doi: 10.1021/cr200434v

    50. [50]

      Wang, L.; Wang, D.; Dong, X. Y.; Zhang, Z. J.; Pei, X. F.; Chen, X. J.; Chen, B.; Jin, J. Chem. Commun. 2011, 47, 3556. doi: 10.1039/c0cc05420h  doi: 10.1039/c0cc05420h

    51. [51]

      Wimalasiri, Y.; Fan, R.; Zhao, X. S.; Zou, L. Electrochim. Acta 2014, 134, 127. doi: 10.1016/j.electacta.2014.04.129  doi: 10.1016/j.electacta.2014.04.129

    52. [52]

      Quan, W.; Tang, Z. L.; Wang, S. T.; Hong, Y.; Zhang, Z. T. Chem. Commun. 2016, 52, 3694. doi: 10.1039/c5cc08744a  doi: 10.1039/c5cc08744a

    53. [53]

      Cai, P.; Zheng, H.; Wang, C.; Ma, H.; Hu, J.; Pu, Y.; Liang, P. J. Hazard. Mater. 2012, 213-214, 100. doi: 10.1016/j.jhazmat.2012.01.069  doi: 10.1016/j.jhazmat.2012.01.069

    54. [54]

      Wang, J.; Gao, F.; Du, X.; Ma, X.; Hao, X.; Ma, W.; Wang, K.; Guan, G.; Abudula, A. Electrochim. Acta 2020, 331, 135288. doi: 10.1016/j.electacta.2019.135288  doi: 10.1016/j.electacta.2019.135288

    55. [55]

      Ren, Q.; Wang, G.; Wu, T.; He, X.; Wang, J.; Yang, J.; Yu, C.; Qiu, J. Ind. Eng. Chem. Res. 2018, 57, 6417. doi: 10.1021/acs.iecr.7b04983  doi: 10.1021/acs.iecr.7b04983

    56. [56]

      Hu, C.; Dong, J.; Wang, T.; Liu, R.; Liu, H.; Qu, J. Chem. Eng. J. 2018, 335, 475. doi: 10.1016/j.cej.2017.10.167  doi: 10.1016/j.cej.2017.10.167

    57. [57]

      Wang, X.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Nat. Commun. 2015, 6, 6544. doi: 10.1038/ncomms7544  doi: 10.1038/ncomms7544

    58. [58]

      Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992. doi: 10.1002/adma.201304138  doi: 10.1002/adma.201304138

    59. [59]

      Pang, J.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M. H. Chem. Soc. Rev. 2019, 48, 72. doi: 10.1039/c8cs00324f  doi: 10.1039/c8cs00324f

    60. [60]

      Ihsanullah, I. Nano-Micro Lett. 2020, 12, 72. doi: 10.1007/s40820-020-0411-9  doi: 10.1007/s40820-020-0411-9

    61. [61]

      Shen, X.; Xiong, Y.; Hai, R.; Yu, F.; Ma, J. Environ. Sci. Technol. 2020, 54, 4554. doi: 10.1021/acs.est.9b05759  doi: 10.1021/acs.est.9b05759

    62. [62]

      Wang, D.; Gao, Y.; Liu, Y.; Gogotsi, Y.; Meng, X.; Chen, G.; Wei, Y. J. Mater. Chem. A 2017, 5, 24720. doi: 10.1039/c7ta09057a  doi: 10.1039/c7ta09057a

    63. [63]

      Cui, H.; Li, Q.; Qian, Y.; Tang, R.; An, H.; Zhai, J. Water Res. 2011, 45, 5736. doi: 10.1016/j.watres.2011.08.049  doi: 10.1016/j.watres.2011.08.049

    64. [64]

      Silambarasan, K.; Joseph, J. Energy Technol. 2019, 7, 1800601. doi: 10.1002/ente.201800601  doi: 10.1002/ente.201800601

    65. [65]

      Li, Y.; Ding, Z.; Li, J.; Wang, K.; Lu, T.; Pan, L. Desalination 2020, 481, 114379. doi: 10.1016/j.desal.2020.114379  doi: 10.1016/j.desal.2020.114379

    66. [66]

      Shi, Y.; Zhou, X.; Yu, G. Acc. Chem. Res. 2017, 50, 2642. doi: 10.1021/acs.accounts.7b00402  doi: 10.1021/acs.accounts.7b00402

    67. [67]

      Wang, Z.; Xu, X.; Kim, J.; Malgras, V.; Mo, R.; Li, C.; Lin, Y.; Tan, H.; Tang, J.; Pan, L.; et al. Mater. Horiz. 2019, 6, 1433. doi: 10.1039/c9mh00306a  doi: 10.1039/c9mh00306a

    68. [68]

      Dai, J.; Wang, J.; Hou, X.; Ru, Q.; He, Q.; Srimuk, P.; Presser, V.; Chen, F. ChemSusChem 2020, 13, 2792. doi: 10.1002/cssc.202000188  doi: 10.1002/cssc.202000188

    69. [69]

      Dai, J.; Pyae, N. L. W.; Chen, F.; Liang, M.; Wang, S.; Ramalingam, K.; Zhai, S.; Su, C.; Shi, Y.; Tan, S. C.; et al. ACS Appl. Mater. Interfaces 2020, 12, 25728. doi: 10.1021/acsami.0c02822  doi: 10.1021/acsami.0c02822

    70. [70]

      Zhao, X.; Ren, S.; Bruns, M.; Fichtner, M. J. Power Sources 2014, 245, 706. doi: 10.1016/j.jpowsour.2013.07.001  doi: 10.1016/j.jpowsour.2013.07.001

    71. [71]

      Gao, P.; Reddy, M. A.; Mu, X.; Diemant, T.; Zhang, L.; Zhao-Karger, Z.; Chakravadhanula, V. S.; Clemens, O.; Behm, R. J.; Fichtner, M. Angew. Chem. Int. Ed. 2016, 55, 4285. doi: 10.1002/anie.201509564  doi: 10.1002/anie.201509564

    72. [72]

      Lakshmi, K. P.; Janas, K. J.; Shaijumon, M. M. J. Power Sources 2019, 433, 126685. doi: 10.1016/j.jpowsour.2019.05.091  doi: 10.1016/j.jpowsour.2019.05.091

    73. [73]

      Zhao, X.; Zhao, Z.; Yang, M.; Xia, H.; Yu, T.; Shen, X. ACS Appl. Mater. Interfaces 2017, 9, 2535. doi: 10.1021/acsami.6b14755  doi: 10.1021/acsami.6b14755

    74. [74]

      Zhao, Z.; Yu, T.; Miao, Y.; Zhao, X. Electrochim. Acta 2018, 270, 30. doi: 10.1016/j.electacta.2018.03.077  doi: 10.1016/j.electacta.2018.03.077

    75. [75]

      Yu, T.; Yang, R.; Zhao, X.; Shen, X. ChemElectroChem 2019, 6, 1761. doi: 10.1002/celc.201801803  doi: 10.1002/celc.201801803

    76. [76]

      Yang, R.; Yu, T.; Zhao, X. J. Alloys Compd. 2019, 788, 407. doi: 10.1016/j.jallcom.2019.02.234  doi: 10.1016/j.jallcom.2019.02.234

    77. [77]

      Chen, F.; Leong, Z. Y.; Yang, H. Y. Energy Storage Mater. 2017, 7, 189. doi: 10.1016/j.ensm.2017.02.001  doi: 10.1016/j.ensm.2017.02.001

    78. [78]

      Hu, X.; Chen, F.; Wang, S.; Ru, Q.; Chu, B.; Wei, C.; Shi, Y.; Ye, Z.; Chu, Y.; Hou, X.; et al. ACS Appl. Mater. Interfaces 2019, 11, 9144. doi: 10.1021/acsami.8b21652  doi: 10.1021/acsami.8b21652

    79. [79]

      Yin, Q.; Rao, D.; Zhang, G.; Zhao, Y.; Han, J.; Lin, K.; Zheng, L.; Zhang, J.; Zhou, J.; Wei, M. Adv. Funct. Mater. 2019, 29, 1900983. doi: 10.1002/adfm.201900983  doi: 10.1002/adfm.201900983

  • 加载中
    1. [1]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    2. [2]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    3. [3]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    4. [4]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    5. [5]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    6. [6]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    7. [7]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    8. [8]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    9. [9]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    12. [12]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    13. [13]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    14. [14]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    15. [15]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    16. [16]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    17. [17]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    18. [18]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    19. [19]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    20. [20]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(33)
  • Abstract views(2105)
  • HTML views(599)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return