Citation: Jin Huidong, Xiong Likun, Zhang Xiang, Lian Yuebin, Chen Si, Lu Yongtao, Deng Zhao, Peng Yang. Cu-Based Catalyst Derived from Nitrogen-Containing Metal Organic Frameworks for Electroreduction of CO2[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 200601. doi: 10.3866/PKU.WHXB202006017 shu

Cu-Based Catalyst Derived from Nitrogen-Containing Metal Organic Frameworks for Electroreduction of CO2

  • Corresponding author: Lu Yongtao, sudalyt@suda.edu Peng Yang, ypeng@suda.edu.cn
  • These authors contributed equally.
  • Received Date: 9 June 2020
    Revised Date: 4 July 2020
    Accepted Date: 4 July 2020
    Available Online: 13 July 2020

    Fund Project: Six Talent Peak Programs in Jiangsu Province, China XCL-057The project was supported by the National Natural Science Foundation of China (21701118), Major Project of Natural Science Research in Universities of Jiangsu Province, China (18KJA480004), Six Talent Peak Programs in Jiangsu Province, China (XCL-057, XCL-062, TD-XCL-006)Major Project of Natural Science Research in Universities of Jiangsu Province, China 18KJA480004Six Talent Peak Programs in Jiangsu Province, China XCL-062Six Talent Peak Programs in Jiangsu Province, China TD-XCL-006the National Natural Science Foundation of China 21701118

  • With the development of human society and economy, the demand for energy resources has also increased rapidly. However, the use of traditional fossil energy leads to high amounts of carbon dioxide emissions, causing severe greenhouse effects. This, in turn, triggers a series of environmental problems. Harnessing renewable energy such as solar energy, wind energy, and hydropower to replace the traditional energy sources is very urgent. Conversion CO2 into value-added fuels and chemicals could be a useful strategy to mitigate the current energy and environmental crisis. It is well known that Cu-based materials are good electrocatalysts for the electrochemical reduction of CO2 (ECR-CO2). However, they suffer from some disadvantages such as high overpotential and poor selectivity and durability. Therefore, the development of copper based electrocatalysts with high activity and selectivity is essential.Metal-organic frameworks (MOFs) materials that have the advantages of large specific surface area, tunable pore size and porosity, and highly dispersed unsaturated metal centers can be used as electrocatalysts for CO2 reduction or as precursors for further preparation of catalysts with excellent performance. Through thermal decomposition in an inert atmosphere, metal ions in MOF can be transformed into metal clusters, metal oxides, or even metal mono-atoms. Meanwhile, organic ligands are carbonized into porous carbon materials. The addition of some heteroatoms such as B, N, P, and S to carbon materials has also been shown to be effective in changing the electron state and coordination structure of the catalysts. These heteroatoms combine with carbon atoms to form a new active site, denoted as M-X-C (M is the central metal ion and X is the mixed heteroatom) to enhance the catalytic activity of the ECR-CO2.Herein, pre-synthesized Cu-NBDC MOF (a Cu-based MOF synthesized by using 2-aminoterephthalic acid (NBDC) as ligand) is used as a precursor to anchor Cu2O/Cu on nitrogen doped porous carbon (Cu2O/Cu@NC) by annealing at different temperatures. XPS analysis shows that the Cu-N content in Cu2O/Cu@NC decreases with increasing annealing temperature. Investigation of the ECR-CO2 reveals that Cu2O/Cu@NC can inhibit the HER more effectively compared to Cu2O/Cu@C, thereby improving the overall catalytic activity and multi-electron product selectivity of the ECR-CO2. While the Faradic efficiency of formate (FEformate) increases with increasing temperature, those of ethylene and methane (FEC2H4 and FECH4, respectively) decreases with increasing temperature. Specifically, upon annealing at 400 ℃, the CO2 Faradic efficiency of Cu2O/Cu@NC-400 is higher than 86% (−1.4 to −1.6 V vs. RHE), including 20.4% of FEC2H4 (−1.4 V vs. RHE) and 23.9% of FECH4 (−1.6 V vs. RHE). By contrast, FECH4 (−1.6 V vs. RHE) in the presence of Cu2O/Cu@C-400 without nitrogen doping is only 2.33%, and no C2H4 is detected. These significant differences in the catalytic behavior can be attributed to the fact that Cu-N is conducive for the stable adsorption of the *CH2 intermediate during the ECR-CO2, thus inhibiting the evolution of H2. These results indicate that the pathway of the ECR-CO2 and its performance can be effectivel regulated by complexing nitrogen with Cu motifs.
  • 加载中
    1. [1]

      Bai, X. F.; Chen, W.; Wang, B. Y.; Feng, G. H.; Wei, W.; Jiao, Z.; Sun, Y. H. Acta Phys. -Chim. Sin. 2017, 33, 2388.  doi: 10.3866/PKU.WHXB201706131

    2. [2]

      Costentin, C.; Robert, M.; Saveant, J. M. Chem. Soc. Rev. 2013, 42, 2423. doi: 10.1039/TF9050100085  doi: 10.1039/TF9050100085

    3. [3]

      Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc. Faraday. Trans. 1 1989, 85, 2309. doi: 10.1039/F19898502309  doi: 10.1039/F19898502309

    4. [4]

      Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Chem. Lett. 1986, 15, 897. doi: 10.1246/cl.1986.897  doi: 10.1246/cl.1986.897

    5. [5]

      Hori, Y.; Takahashi, R.; Yoshinami, Y.; Murata, A. J. Phys. Chem. B 1997, 101, 7075. doi: 10.1021/jp970284i  doi: 10.1021/jp970284i

    6. [6]

      Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. ChemPhysShem 2017, 18, 3266. doi: 10.1002/cphc.201700736  doi: 10.1002/cphc.201700736

    7. [7]

      Peterson, A. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2012, 3, 251. doi: 10.1021/jz201461p  doi: 10.1021/jz201461p

    8. [8]

      Hansen, H. A.; Varley, J. B.; Peterson, A. A.; Norskov, J. K. J. Phys. Chem. Lett. 2013, 4, 388. doi: 10.1021/jz3021155  doi: 10.1021/jz3021155

    9. [9]

      Zhu, Q. G.; Sun, X. F.; Kang, X. C.; Ma, J.; Qian, Q. L.; Han, B. X. Acta Phys. -Chim. Sin. 2016, 32, 261.  doi: 10.3866/PKU.WHXB201512101

    10. [10]

      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5. doi: 10.1039/C2EE21234J  doi: 10.1039/C2EE21234J

    11. [11]

      Kim, D.; Kley, C. S.; Li, Y.; Yang, P. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10560. doi: 10.1073/pnas.1711493114  doi: 10.1073/pnas.1711493114

    12. [12]

      Meng, Y. C.; Kuang, S. Y.; Liu, H.; Fan, Q.; Ma, X. B.; Zhang, S. Acta Phys. -Chim. Sin. 2021, 37, 2006034.  doi: 10.3866/PKU.WHXB202006034

    13. [13]

      Gattrell, M.; Gupta, N.; Co, A. J. Electroanal. Chem. 2006, 594, 1. doi: 10.1016/j.jelechem.2006.05.013  doi: 10.1016/j.jelechem.2006.05.013

    14. [14]

      Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Norskov, J. K. Energy Environ. Sci. 2010, 3, 1311. doi: 10.1039/C0EE00071J  doi: 10.1039/C0EE00071J

    15. [15]

      Baturina, O. A.; Lu, Q.; Padilla, M. A.; Xin, L.; Li, W.; Serov, A. ACS Catal. 2014, 4, 3682. doi: 10.1021/cs500537y  doi: 10.1021/cs500537y

    16. [16]

      Li, Y.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y.; Yang, P. Nano Lett. 2017, 17, 1312. doi: 10.1021/acs.nanolett.6b05287  doi: 10.1021/acs.nanolett.6b05287

    17. [17]

      Li, Q.; Zhu, W.; Fu, J.; Zhang, H.; Wu, G.; Sun, S. Nano Energy 2016, 24, 1. doi: 10.1016/j.nanoen.2016.03.024  doi: 10.1016/j.nanoen.2016.03.024

    18. [18]

      Ning, H.; Wang, W.; Mao, Q.; Zheng, S.; Yang, Z.; Zhao, Q.; Wu, M. Acta Phys. -Chim. Sin. 2018, 34, 938.  doi: 10.3866/PKU.WHXB201801263

    19. [19]

      Wang, J.; Li, Z.; Dong, C.; Feng, Y.; Yang, J.; Liu, H.; Du, X. ACS Appl. Mater. Interfaces 2019, 11, 2763. doi: 1021/acsami.8b20545

    20. [20]

      Ting, L. R. L.; Piqué, O.; Lim, S. Y.; Tanhaei, M.; Calle-Vallejo, F.; Yeo, B. S. ACS Catal. 2020, 10, 4059. doi: 10.1021/acscatal.9b05319  doi: 10.1021/acscatal.9b05319

    21. [21]

      Li, Y. C.; Wang, Z.; Yuan, T.; Nam, D. H.; Luo, M.; Wicks, J.; Chen, B.; Li, J.; Li, F. W.; de Arguer, F. P. G.; et al. J. Am. Chem. Soc. 2019, 141, 8584. doi: 10.1021/jacs.9b02945  doi: 10.1021/jacs.9b02945

    22. [22]

      Kottakkat, T.; Klingan, K.; Jiang, S.; Jovanov, Z. P.; Davies, V. H.; El-Nagar, G. A. M.; Dau, H.; Roth, C. ACS Appl. Mater. Interfaces 2019, 11, 14734. doi: 10.1021/acsami.8b22071  doi: 10.1021/acsami.8b22071

    23. [23]

      Zhang, C.; Chen, Z.; Lian, Y.; Chen, Y.; Li, Q.; Gu, Y.; Lu, Y.; Deng, Z.; Peng, Y. Acta Phys. -Chim. Sin. 2019, 35, 1404.  doi: 10.3866/PKU.WHXB201905030

    24. [24]

      Machan, C. W.; Chabolla, S. A.; Yin, J.; Gilson, M. K.; Tezcan, F. A.; Kubiak, C. P. J. Am. Chem. Soc. 2014, 136, 14598. doi: 10.1021/ja5085282  doi: 10.1021/ja5085282

    25. [25]

      Hinogami, R.; Yotsuhashi, S.; Deguchi, M.; Zenitani, Y.; Hashiba, H.; Yamada, Y. ECS Electrochem. Lett. 2012, 1, H17. doi: 10.1149/2.001204eel  doi: 10.1149/2.001204eel

    26. [26]

      Kumar, R. S.; Kumar, S. S.; Kulandainathan, M. A. Electrochem. Commun. 2012, 25, 70. doi: 10.1016/j.elecom.2012.09.018  doi: 10.1016/j.elecom.2012.09.018

    27. [27]

      Albo, J.; Vallejo, D.; Beobide, G.; Castillo, O.; Castano, P.; Irabien, A. ChemSusChem 2017, 10, 1100. doi: 10.1002/cssc.201600693  doi: 10.1002/cssc.201600693

    28. [28]

      Kang, X.; Zhu, Q.; Sun, X.; Hu, J.; Zhang, J.; Liu, Z.; Han, B. Chem. Sci. 2016, 7, 266. doi: 10.1039/c5sc03291a  doi: 10.1039/c5sc03291a

    29. [29]

      Liu, Z. M. Acta Phys. -Chim. Sin. 2019, 35, 1307.  doi: 10.3866/PKU.WHXB201908014

    30. [30]

      Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. ACS Catal. 2015, 5, 6302. doi: 10.1021/acscatal.5b01767  doi: 10.1021/acscatal.5b01767

    31. [31]

      Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. J. Am. Chem. Soc. 2015, 137, 14129. doi: 10.1021/jacs.5b08212  doi: 10.1021/jacs.5b08212

    32. [32]

      Chen, L.; Li, Y.; Xu, N.; Zhang, G. Carbon 2018, 132, 172. doi: 10.1016/j.carbon.2018.02.051  doi: 10.1016/j.carbon.2018.02.051

    33. [33]

      Ye, J.; Johnson, J. K. Catal. Sci. Tech. 2016, 6, 8392. doi: 10.1039/c6cy01245k  doi: 10.1039/c6cy01245k

    34. [34]

      Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Nano Lett. 2016, 16, 7645. doi: 10.1021/acs.nanolett.6b03637  doi: 10.1021/acs.nanolett.6b03637

    35. [35]

      Diercks, C. S.; Liu, Y.; Cordova, K. E.; Yaghi, O. M. Nat. Mater. 2018, 17, 301. doi: 10.1038/s41563-018-0033-5  doi: 10.1038/s41563-018-0033-5

    36. [36]

      Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T. de Arquer, F. P. G.; Wang, Y.; Liang, Z.; Proppe, A. H.; et al. J. Am. Chem. Soc. 2018, 140, 11378. doi: 10.1021/jacs.8b06407  doi: 10.1021/jacs.8b06407

    37. [37]

      Qiu, Y. L.; Zhong, H. X.; Zhang, T. T.; Xu, W. B.; Su, P. P.; Li, X. F.; Zhang, H. M. ACS Appl. Mater. Interfaces 2018, 10, 2480. doi: 10.1021/acsami.7b15255  doi: 10.1021/acsami.7b15255

    38. [38]

      Wang, R. M.; Sun, X. H.; Ould-Chikh, S.; Osadchii, D.; Bai, F.; Kapteijn, F.; Gascon, J. ACS Appl. Mater. Interfaces 2018, 10, 14751. doi: 10.1021/acsami.8b02226  doi: 10.1021/acsami.8b02226

    39. [39]

      Zhou, W.; Jia, J.; Lu, J.; Yang, L.; Hou, D.; Li, G.; Chen, S. Nano Energy 2016, 28, 29. doi: 10.1016/j.nanoen.2016.08.027  doi: 10.1016/j.nanoen.2016.08.027

    40. [40]

      Huan, T. N.; Ranjbar, N.; Rousse, G.; Sougrati, M.; Zitolo, A.; Mougel, V.; Jaouen, F.; Fontecave, M. ACS Catal. 2017, 7, 1520. doi: 10.1021/acscatal.6b03353  doi: 10.1021/acscatal.6b03353

    41. [41]

      Ju, W.; Bagger, A.; Hao, G. P.; Varela, A. S.; Sinev, I.; Bon, V.; Roldan Cuenya, B.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Nat. Commun. 2017, 8, 944. doi: 10.1038/s41467-017-01035-z  doi: 10.1038/s41467-017-01035-z

    42. [42]

      Cheng, Y. S.; Chu, X. P.; Ling, M.; Li, N.; Wu, K. L.; Wu, F. H.; Li, H.; Yuan, G.; Wei, X. W. Catal. Sci. Tech. 2019, 9, 5668. doi: 10.1039/C9CY01131E  doi: 10.1039/C9CY01131E

    43. [43]

      Rostamnia, S.; Alamgholiloo, H.; Liu, X. J. Colloid Interface Sci. 2016, 469, 310. doi: 10.1016/j.jcis.2016.02.021  doi: 10.1016/j.jcis.2016.02.021

    44. [44]

      Wang, R.; Wang, K.; Wang, Z.; Song, H.; Wang, H.; Ji, S. J. Power Sources 2015, 297, 295. doi: 10.1016/j.jpowsour.2015.07.107  doi: 10.1016/j.jpowsour.2015.07.107

    45. [45]

      Zhao, K.; Liu, Y.; Quan, X.; Chen, S.; Yu, H. ACS Appl. Mater. Interfaces 2017, 9, 5302. doi: 10.1021/acsami.6b15402  doi: 10.1021/acsami.6b15402

    46. [46]

      Han, X.; He, X.; Sun, L.; Han, X.; Zhan, W.; Xu, J.; Wang, X.; Chen, J. ACS Catal. 2018, 8, 4, 3348-3356. doi: 10.1021/acscatal.7b04219  doi: 10.1021/acscatal.7b04219

    47. [47]

      Han, X.; He, X.; Wang, F.; Chen, J.; Xu, J.; Wang, X.; Han, X. J. Mater. Chem. A 2017, 5, 10220. doi: 10.1039/c7ta01909b  doi: 10.1039/c7ta01909b

    48. [48]

      Ishizuka, S.; Kato, S.; Maruyama, T.; Akimoto, K. Jpn. J. Appl. Phys. 2001, 40, 2765. doi: 10.1143/JJAP.40.2765  doi: 10.1143/JJAP.40.2765

    49. [49]

      Zheng, Y.; Cheng, P.; Xu, J.; Han, J.; Wang, D.; Hao, C.; Alanagh, H. R.; Long, C.; Shi, X.; Tang, Z. Nanoscale 2019, 11, 4911. doi: 10.1039/c8nr10236h  doi: 10.1039/c8nr10236h

    50. [50]

      Zhang, L. S.; Liang, X. Q.; Song, W. G.; Wu, Z. Y. Phys. Chem. Chem. Phys. 2010, 12, 12055. doi: 10.1039/c0cp00789g  doi: 10.1039/c0cp00789g

    51. [51]

      Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. Angew. Chem. Int. Ed. 2014, 53, 14235. doi: 10.1002/anie.201408990  doi: 10.1002/anie.201408990

    52. [52]

      Nie, X.; Luo, W.; Janik, M. J.; Asthagiri, A. J. Catal. 2014, 312, 108. doi: 10.1016/j.jcat.2014.01.013  doi: 10.1016/j.jcat.2014.01.013

    53. [53]

      Sharma, P. P.; Wu, J.; Yadav, R. M.; Liu, M.; Wright, C. J.; Tiwary, C. S.; Yakobson, B. I.; Lou, J.; Ajayan, P. M.; Zhou, X. D. Angew. Chem. Int. Ed. 2015, 54, 13701. doi: 10.1002/anie.201506062  doi: 10.1002/anie.201506062

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    3. [3]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    4. [4]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    5. [5]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    6. [6]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    7. [7]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    8. [8]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    9. [9]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    15. [15]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    16. [16]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

Metrics
  • PDF Downloads(55)
  • Abstract views(2302)
  • HTML views(668)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return