
Citation: Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites[J]. Acta Physico-Chimica Sinica, 2022, 38(5): 200500. doi: 10.3866/PKU.WHXB202005006

仿鲍鱼壳石墨烯多功能纳米复合材料
English
Nacre-Inspired Graphene-based Multifunctional Nanocomposites

-
Key words:
- Nacre
- / Bioinspiration
- / Graphene
- / Multifunction
- / Nanocomposite
-
-
[1]
Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849
-
[2]
Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385. doi: 10.1126/science.1157996
-
[3]
Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; et al. Science 2006, 312, 1191. doi: 10.1126/science.1125925
-
[4]
Huang, C.; Cheng, Q. Compos. Sci. Technol. 2017, 150, 141. doi: 10.1016/j.compscitech.2017.07.021
-
[5]
Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. Adv. Mater. 2016, 28, 7862. doi: 10.1002/adma.201601934
-
[6]
Wegst, U. G.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Nat. Mater. 2015, 14, 23. doi: 10.1038/nmat4089
-
[7]
Barthelat, F.; Yin, Z.; Buehler, M. J. Nat. Rev. Mater. 2016, 1, 16007. doi: 10.1038/natrevmats.2016.7
-
[8]
Espinosa, H. D.; Rim, J. E.; Barthelat, F.; Buehler, M. J. Prog. Mater. Sci. 2009, 54, 1059. doi: 10.1016/j.pmatsci.2009.05.001
-
[9]
Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Nature 2007, 448, 457. doi: 10.1038/nature06016
-
[10]
Keten, S.; Buehler, M. J. Nano Lett. 2008, 8, 743. doi: 10.1021/nl0731670
-
[11]
Park, S.; Lee, K. S.; Bozoklu, G.; Cai, W.; Nguyen, S. T.; Ruoff, R. S. ACS Nano 2008, 2, 572. doi: 10.1021/nn700349a
-
[12]
Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. J. Am. Chem. Soc. 2008, 130, 5856. doi: 10.1021/ja800745y
-
[13]
Putz, K. W.; Compton, O. C.; Palmeri, M. J.; Nguyen, S. T.; Brinson, L. C. Adv. Funct. Mater. 2010, 20, 3322. doi: 10.1002/adfm.201000723
-
[14]
Li, Y. Q.; Yu, T.; Yang, T. Y.; Zheng, L. X.; Liao, K. Adv. Mater. 2012, 24, 3426. doi: 10.1002/adma.201200452
-
[15]
Hu, K.; Tolentino, L. S.; Kulkarni, D. D.; Ye, C.; Kumar, S.; Tsukruk, V. V. Angew. Chem. Int. Ed. 2013, 52, 13784. doi: 10.1002/anie.201307830
-
[16]
Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Adv. Mater. 2013, 25, 188. doi: 10.1002/adma.201203448
-
[17]
Yeh, C. N.; Raidongia, K.; Shao, J.; Yang, Q. H.; Huang, J. Nat. Chem. 2014, 7, 166. doi: 10.1038/nchem.2145
-
[18]
Zhang, M.; Huang, L.; Chen, J.; Li, C.; Shi, G. Adv. Mater. 2014, 26, 7588. doi: 10.1002/adma.201403322
-
[19]
Wang, J.; Qiao, J.; Wang, J.; Zhu, Y.; Jiang, L. ACS Appl. Mater. Interfaces 2015, 7, 9281. doi: 10.1021/acsami.5b02194
-
[20]
Xin, G.; Yao, T.; Sun, H.; Scott, S. M.; Shao, D.; Wang, G.; Lian, J. Science 2015, 349, 1083. doi: 10.1126/science.aaa6502
-
[21]
Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chem. Rev. 2016, 116, 5464. doi: 10.1021/acs.chemrev.5b00620
-
[22]
Xiong, R.; Hu, K.; Grant, A. M.; Ma, R.; Xu, W.; Lu, C.; Zhang, X.; Tsukruk, V. V. Adv. Mater. 2016, 28, 1501. doi: 10.1002/adma.201504438
-
[23]
Ye, S.; Chen, B.; Hu, D.; Liu, C.; Feng, J. ChemNanoMat 2016, 2, 816. doi: 10.1002/cnma.201600127
-
[24]
Zhao, H.; Yue, Y.; Zhang, Y.; Li, L.; Guo, L. Adv. Mater. 2016, 28, 2037. doi: 10.1002/adma.201505511
-
[25]
He, G.; Xu, M.; Zhao, J.; Jiang, S.; Wang, S.; Li, Z.; He, X.; Huang, T.; Cao, M.; Wu, H.; et al. Adv. Mater. 2017, 29, 1605898. doi: 10.1002/adma.201605898
-
[26]
Xin, G.; Zhu, W.; Deng, Y.; Cheng, J.; Zhang, L. T.; Chung, A. J.; De, S.; Lian, J. Nat. Nanotechnol. 2019, 14, 168. doi: 10.1038/s41565-018-0330-9
-
[27]
Li, P.; Yang, M.; Liu, Y.; Qin, H.; Liu, J.; Xu, Z.; Liu, Y.; Meng, F.; Lin, J.; Wang, F.; et al. Nat. Commun. 2020, 11, 2645. doi: 10.1038/s41467-020-16494-0
-
[28]
Wan, S.; Cheng, Q. Adv. Funct. Mater. 2017, 27, 1703459. doi: 10.1002/adfm.201703459
-
[29]
Zhang, Y.; Gong, S.; Zhang, Q.; Ming, P.; Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. Chem. Soc. Rev. 2016, 45, 2378. doi: 10.1039/c5cs00258c
-
[30]
Xu, Z.; Gao, C. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583
-
[31]
Zhang, Y.; Li, Y.; Ming, P.; Zhang, Q.; Liu, T.; Jiang, L.; Cheng, Q. Adv. Mater. 2016, 28, 2834. doi: 10.1002/adma.201506074
-
[32]
Zhang, Y.; Peng, J.; Li, M.; Saiz, E.; Wolf, S. E.; Cheng, Q. ACS Nano 2018, 12, 8901. doi: 10.1021/acsnano.8b04322
-
[33]
Wang, X.; Peng, J.; Zhang, Y.; Li, M.; Saiz, E.; Tomsia, A. P.; Cheng, Q. ACS Nano 2018, 12, 12638. doi: 10.1021/acsnano.8b07392
-
[34]
Cheng, Y. R.; Peng, J. S.; Xu, H. J.; Cheng, Q. F. Adv. Funct. Mater. 2018, 28, 1800924. doi: 10.1002/adfm.201800924
-
[35]
Wan, S.; Zhang, Q.; Zhou, X.; Li, D.; Ji, B.; Jiang, L.; Cheng, Q. ACS Nano 2017, 11, 7074. doi: 10.1021/acsnano.7b02706
-
[36]
Akbari, A.; Cunning, B. V.; Joshi, S. R.; Wang, C.; Camacho-Mojica, D. C.; Chatterjee, S.; Modepalli, V.; Cahoon, C.; Bielawski, C. W.; Bakharev, P.; et al. Matter 2020, 2, 1198. doi: 10.1016/j.matt.2020.02.014
-
[37]
Wan, S.; Li, Y.; Mu, J.; Aliev, A. E.; Fang, S.; Kotov, N. A.; Jiang, L.; Cheng, Q.; Baughman, R. H. Proc. Natl. Acad. Sci. USA 2018, 115, 5359. doi: 10.1073/pnas.1719111115
-
[38]
Zhou, T.; Ni, H.; Wang, Y.; Wu, C.; Zhang, H.; Zhang, J.; Tomsia, A. P.; Jiang, L.; Cheng, Q. Proc. Natl. Acad. Sci. USA 2020, 117, 8727. doi: 10.1073/pnas.1916610117
-
[39]
Cui, W.; Li, M.; Liu, J.; Wang, B.; Zhang, C.; Jiang, L.; Cheng, Q. ACS Nano 2014, 8, 9511. doi: 10.1021/nn503755c
-
[40]
Wan, S. J.; Peng, J. S.; Li, Y. C.; Hu, H.; Jiang, L.; Cheng, Q. F. ACS Nano 2015, 9, 9830. doi: 10.1021/acsnano.5b02902
-
[41]
Degtyar, E.; Harrington, M. J.; Politi, Y.; Fratzl, P. Angew. Chem. Int. Ed. 2014, 53, 12026. doi: 10.1002/anie.201404272
-
[42]
Huang, X.; Zeng, Z.; Zhang, H. Chem. Soc. Rev. 2013, 42, 1934. doi: 10.1039/c2cs35387c
-
[43]
Liu, Y.; Rodrigues, J. N. B.; Luo, Y. Z.; Li, L.; Carvalho, A.; Yang, M.; Laksono, E.; Lu, J.; Bao, Y.; Xu, H.; et al. Nat. Nanotechnol. 2018, 13, 828. doi: 10.1038/s41565-018-0178-z
-
[44]
Dong, X.; Fu, D.; Fang, W.; Shi, Y.; Chen, P.; Li, L. J. Small 2009, 5, 1422. doi: 10.1002/smll.200801711
-
[45]
Das, B.; Voggu, R.; Rout, C. S.; Rao, C. N. Chem. Commun. 2008, 5155. doi: 10.1039/b808955h
-
[46]
Su, Y. H.; Wu, Y. K.; Tu, S. L.; Chang, S. J. Appl. Phys. Lett. 2011, 99, 163102. doi: 10.1063/1.3653284
-
[47]
Ni, H.; Xu, F.; Tomsia, A. P.; Saiz, E.; Jiang, L.; Cheng, Q. ACS Appl. Mater. Interfaces 2017, 9, 24987. doi: 10.1021/acsami.7b07748
-
[48]
Gong, S.; Cui, W.; Zhang, Q.; Cao, A.; Jiang, L.; Cheng, Q. ACS Nano 2015, 9, 11568. doi: 10.1021/acsnano.5b05252
-
[49]
Wan, S.; Li, Y.; Peng, J.; Hu, H.; Cheng, Q.; Jiang, L. ACS Nano 2015, 9, 708. doi: 10.1021/nn506148w
-
[50]
Wang, J.; Cheng, Q.; Lin, L.; Jiang, L. ACS Nano 2014, 8, 2739. doi: 10.1021/nn406428n
-
[51]
Wan, S.; Xu, F.; Jiang, L.; Cheng, Q. Adv. Funct. Mater. 2017, 27, 1605636. doi: 10.1002/adfm.201605636
-
[52]
Cheng, Q.; Wu, M.; Li, M.; Jiang, L.; Tang, Z. Angew. Chem. Int. Ed. 2013, 52, 3750. doi: 10.1002/anie.201210166
-
[53]
Song, P.; Xu, Z.; Wu, Y.; Cheng, Q.; Guo, Q.; Wang, H. Carbon 2017, 111, 807. doi: 10.1016/j.carbon.2016.10.067
-
[54]
Gong, S.; Jiang, L.; Cheng, Q. J. Mater. Chem. A 2016, 4, 17073. doi: 10.1039/c6ta06893f
-
[55]
Gong, S.; Zhang, Q.; Wang, R.; Jiang, L.; Cheng, Q. J. Mater. Chem. A 2017, 5, 16386. doi: 10.1039/c7ta03535g
-
[56]
Ming, P.; Song, Z.; Gong, S.; Zhang, Y.; Duan, J.; Zhang, Q.; Jiang, L.; Cheng, Q. J. Mater. Chem. A 2015, 3, 21194. doi: 10.1039/c5ta05742f
-
[57]
Gong, S.; Wu, M.; Jiang, L.; Cheng, Q. Mater. Res. Express 2016, 3, 075002. doi: 10.1088/2053-1591/3/7/075002
-
[58]
Wan, S.; Hu, H.; Peng, J.; Li, Y.; Fan, Y.; Jiang, L.; Cheng, Q. Nanoscale 2016, 8, 5649. doi: 10.1039/c6nr00562d
-
[59]
Zhang, Q.; Wan, S.; Jiang, L.; Cheng, Q. Sci. China: Technol. Sci. 2017, 60, 758. doi: 10.1007/s11431-016-0529-3
-
[60]
Wan, S.; Chen, Y.; Wang, Y.; Li, G.; Wang, G.; Liu, L.; Zhang, J.; Liu, Y.; Xu, Z.; Tomsia, A. P. Matter 2019, 1, 389. doi: 10.1016/j.matt.2019.04.006
-
[61]
Kumar, A.; Sharma, K.; Dixit, A. R. J. Mater. Sci. 2018, 54, 5992. doi: 10.1007/s10853-018-03244-3
-
[62]
Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G. H.; Vahid, S. Nanoscale 2015, 7, 10294. doi: 10.1039/c5nr01354b
-
[63]
Chandrasekaran, S.; Sato, N.; Tölle, F.; Mülhaupt, R.; Fiedler, B.; Schulte, K. Compos. Sci. Technol. 2014, 97, 90. doi: 10.1016/j.compscitech.2014.03.014
-
[64]
Deville, S.; Saiz, E.; Nalla, R. K.; Tomsia, A. P. Science 2006, 311, 515. doi: 10.1126/science.1120937
-
[65]
Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Science 2008, 322, 1516. doi: 10.1126/science.1164865
-
[66]
Bouville, F.; Maire, E.; Meille, S.; Van de Moortele, B.; Stevenson, A. J.; Deville, S. Nat. Mater. 2014, 13, 508. doi: 10.1038/nmat3915
-
[67]
Bai, H.; Chen, Y.; Delattre, B.; Tomsia, A. P.; Ritchie, R. O. Sci. Adv. 2015, 1, e1500849. doi: 10.1126/sciadv.1500849
-
[68]
Qiu, L.; Liu, J. Z.; Chang, S. L.; Wu, Y.; Li, D. Nat. Commun. 2012, 3, 1241. doi: 10.1038/ncomms2251
-
[69]
Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W.; et al. Nat. Commun. 2016, 7, 12920. doi: 10.1038/ncomms12920
-
[70]
Picot, O. T.; Rocha, V. G.; Ferraro, C.; Ni, N.; D'Elia, E.; Meille, S.; Chevalier, J.; Saunders, T.; Peijs, T.; Reece, M. J.; et al. Nat. Commun. 2017, 8, 14425. doi: 10.1038/ncomms14425
-
[71]
Si, Y.; Wang, X.; Dou, L.; Yu, J.; Ding, B. Sci. Adv. 2018, 4, eaas8925. doi: 10.1126/sciadv.aas8925
-
[72]
Ferraro, C.; Garcia-Tuñon, E.; Rocha, V. G.; Barg, S.; Fariñas, M. D.; Alvarez-Arenas, T. E. G.; Sernicola, G.; Giuliani, F.; Saiz, E. Adv. Funct. Mater. 2016, 26, 1636. doi: 10.1002/adfm.201504051
-
[73]
Zhang, H.; Cooper, A. I. Adv. Mater. 2007, 19, 1529. doi: 10.1002/adma.200700154
-
[74]
Riblett, B. W.; Francis, N. L.; Wheatley, M. A.; Wegst, U. G. K. Adv. Funct. Mater. 2012, 22, 4920. doi: 10.1002/adfm.201201323
-
[75]
Peng, J.; Huang, C.; Cao, C.; Saiz, E.; Du, Y.; Dou, S.; Tomsia, A. P.; Wagner, H. D.; Jiang, L.; Cheng, Q. Matter 2019, 2, 220. doi: 10.1016/j.matt.2019.08.013
-
[76]
Huang, C.; Peng, J.; Wan, S.; Du, Y.; Dou, S.; Wagner, H. D.; Tomsia, A. P.; Jiang, L.; Cheng, Q. Angew. Chem. Int. Ed. 2019, 58, 7636. doi: 10.1002/anie.201902410
-
[77]
Huang, C.; Peng, J.; Cheng, Y.; Zhao, Q.; Du, Y.; Dou, S.; Tomsia, A. P.; Wagner, H. D.; Jiang, L.; Cheng, Q. J. Mater. Chem. A 2019, 7, 2787. doi: 10.1039/c8ta10725d
-
[78]
张静, 王丽娜, 陈晓飞, 王玉峰, 牛成艳, 吴立新, 唐智勇. 物理化学学报, 2020, 36, 1912002. doi: 10.3866/PKU.WHXB201912002Zhang, J.; Wang, L. N.; Chen, X. F.; Wang, Y. F.; Niu, C. Y.; Wu, L. X.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2020, 36, 1912002. doi: 10.3866/PKU.WHXB201912002
-
[79]
李凯旋, 张泰隆, 李会增, 李明珠, 宋延林. 物理化学学报, 2020, 36, 1911057. doi: 10.3866/PKU.WHXB201911057Li, K. X.; Zhang, T. L.; Li, H. Z.; Li, M. Z.; Song, Y. L. Acta Phys. -Chim. Sin. 2020, 36, 1911057. doi: 10.3866/PKU.WHXB201911057
-
[80]
陈召龙, 高鹏, 刘忠范. 物理化学学报, 2020, 36, 1907004. doi: 10.3866/PKU.WHXB201907004Chen, Z. L.; Gao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004. doi: 10.3866/PKU.WHXB201907004
-
[1]
-

计量
- PDF下载量: 36
- 文章访问数: 1759
- HTML全文浏览量: 484