金纳米复合材料:制备、性质及其癌症诊疗应用

凌云云 夏云生

引用本文: 凌云云, 夏云生. 金纳米复合材料:制备、性质及其癌症诊疗应用[J]. 物理化学学报, 2020, 36(9): 1912006-0. doi: 10.3866/PKU.WHXB201912006 shu
Citation:  Ling Yunyun, Xia Yunsheng. Gold Based Nanocomposites: Fabrication Strategies, Properties, and Tumor Theranostic Applications[J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912006-0. doi: 10.3866/PKU.WHXB201912006 shu

金纳米复合材料:制备、性质及其癌症诊疗应用

    作者简介:
    夏云生,国家基金委优秀青年科学基金获得者,安徽师范大学化学与材料科学学院教授,博士生导师。主要研究方向为纳米自组装及其生物分析应用;
    通讯作者: 夏云生, xiayuns@mail.ahnu.edu.cn
  • 基金项目:

    国家自然科学基金(21775004)和皖南医学院中青年科研项目(WK201512)资助

摘要: 由于可调的局域表面等离子体共振、丰富的表面可修饰性、良好的生物相容性,金纳米粒子(AuNPs)在生物医药领域具有广泛的应用前景。金与其他无机纳米粒子相结合,既集成了单个组分的性质又有望开发组分间的协同效应,这为构建多功能金纳米复合材料提供了基础。本文阐述了金纳米复合材料的制备方法,包括一步合成法,种子生长法及非原位组装法等;对近期金纳米复合材料在癌症诊疗方面的应用进行总结;最后,讨论了多功能金纳米诊疗平台存在的主要问题及未来发展前景。

English

    1. [1]

      Shen, H. Y.; Cheng, L.; Li, L. L.; Liu, H. Y. Gold Nanoparticles and Their Bioapplications. In Nanobiomaterials: Classification, Fabrication and Biomedical Applications; Wang, X. M.; Ramalingam, M.; Kong, X. D.; Zhao; L. Y. Eds.; Wiley: San Francisco, 2017; pp. 359–377.

    2. [2]

      Xia, Y. S. Anal Bioanal Chem 2016, 408, 2813. doi: 10.1007/s00216-015-9203-3 doi: 10.1007/s00216-015-9203-3

    3. [3]

      Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Chem. Rev. 2016, 116, 10414. doi: 10.1021/acs.chemrev.6b00211 doi: 10.1021/acs.chemrev.6b00211

    4. [4]

      Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Adv. Mater. 2014, 26, 5274. doi: 10.1002/adma.201400203 doi: 10.1002/adma.201400203

    5. [5]

      Huang, L.; Ao, L. J.; Hu, D. H.; Wang, W.; Sheng, Z. H.; Su, W. Chem. Mater. 2016, 28 (16), 5896. doi: 10.1021/acs.chemmater.6b02413 doi: 10.1021/acs.chemmater.6b02413

    6. [6]

      Nguyen, T. T.; Mammeri, F.; Ammar, S. Nanomaterials 2018, 8, 149. doi: 10.3390/nano8030149 doi: 10.3390/nano8030149

    7. [7]

      Bertorelle, F.; Pinto, M.; Zappon, R.; Pilot, R.; Litti, L.; Fiameni, S.; Conti, G.; Gobbo, M.; Toffoli, G.; Colombatti, M.; et al. Nanoscale 2018, 10, 976. doi: 10.1039/C7NR07844G doi: 10.1039/C7NR07844G

    8. [8]

      Loo, C.; Lowery, A.; Halas, N.; West, J.; Drezek, R. Nano Lett. 2005, 5 (4), 709. doi: 10.1021/nl050127s doi: 10.1021/nl050127s

    9. [9]

      Calavia, P. G.; Bruce, G.; Pérez-García, L.; Russell, D. A. Photochem. Photobiol. Sci. 2018, 17, 1534. doi: 10.1039/C8PP00271A doi: 10.1039/C8PP00271A

    10. [10]

      Kumar, S.; Diwan, A.; Singh, P.; Gulati, S.; Choudhary, D.; Mongia, A.; Shuklaa, S.; Gupta, A. RSC Adv. 2019, 9, 23894. doi: 10.1039/C9RA03608C doi: 10.1039/C9RA03608C

    11. [11]

      Jeong, H. H.; Choi, E.; Ellis, E.; Lee, T. C. J. Mater. Chem. B 2019, 7, 3480. doi: 10.1039/C9TB00557A doi: 10.1039/C9TB00557A

    12. [12]

      Yang, Y. J.; Zhong, S. A.; Wang, K. M.; Huang, J. Analyst 2019, 144, 1052. doi: 10.1039/C8AN02070A doi: 10.1039/C8AN02070A

    13. [13]

      Sabale, S.; Kandesar, P.; Jadhav, V.; Komorek, R.; Motkuri, R. K.; Yu, X. Y. Biomater. Sci. 2017, 5, 2212. doi: 10.1039/C7BM00723J doi: 10.1039/C7BM00723J

    14. [14]

      Goswami, N.; Luo, Z. T.; Yuan, X.; Leong, D. T.; Xie, J. P. Mater. Horiz. 2017, 4, 817. doi: 10.1039/C7MH00451F doi: 10.1039/C7MH00451F

    15. [15]

      Zong, J. Y.; Cobb, S. L.; Cameron, N. R. Biomater. Sci. 2017, 5, 872. doi: 10.1039/C7BM00006E doi: 10.1039/C7BM00006E

    16. [16]

      Ali, M. R. K.; Wu, Y.; El-Sayed, M. A.; J. Phys. Chem. C 2019, 123 (25), 15375. doi: 10.1021/acs.jpcc.9b01961 doi: 10.1021/acs.jpcc.9b01961

    17. [17]

      Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Mol. Pharmaceutics 2019, 16 (1), 1. doi: 10.1021/acs.molpharmaceut.8b00810 doi: 10.1021/acs.molpharmaceut.8b00810

    18. [18]

      Amendoeira, A.; García, L. R.; Fernandes, A. R.; Baptista, P. V. Adv. Therap. 2019, 1900153. doi: 10.1002/adtp.201900153 doi: 10.1002/adtp.201900153

    19. [19]

      Riley, R. S.; Day, E. S. WIREs Nanomed Nanobiotechnol. 2017, 9, e1449. doi: 10.1002/wnan.1449 doi: 10.1002/wnan.1449

    20. [20]

      Jin, N.; Zhang, Q.; Yang, M. Y.; Yang, M. Y. Microsc. Res. Tech. 2019, 82, 670. doi: 10.1002/jemt.23213 doi: 10.1002/jemt.23213

    21. [21]

      Huang, Y.; Huang, P.; Lin, J. Small Methods 2019, 3 (3), 1800394. doi: 10.1002/smtd.201800394 doi: 10.1002/smtd.201800394

    22. [22]

      Li, X. J.; Kono, K. J. Polym. Int. 2018, 67 (7), 840. doi: 10.1002/pi.5583 doi: 10.1002/pi.5583

    23. [23]

      Luo, Z.; Xu, Y.; Ye, E. Y.; Li, Z. B.; Wu, Y. L. Macromol. Rapid Commun. 2019, 40 (5), 1800029. doi: 10.1002/marc.201800029 doi: 10.1002/marc.201800029

    24. [24]

      Laprise-Pelletier, M.; Simão, T.; Fortin, M. A. Adv. Healthcare Mater. 2018, 7 (16), 1701460. doi: 10.1002/adhm.201701460 doi: 10.1002/adhm.201701460

    25. [25]

      Lopes, T. S.; Alves, G. G.; Pereira, M. R.; Granjeiro, J. M.; Leite, P. E. C. J. Cell Biochem. 2019, 120, 16370. doi: 10.1002/jcb.29044 doi: 10.1002/jcb.29044

    26. [26]

      Luo, C. H.; Yeh, C. S. J. Chin. Chem. Soc. 2017, 64 (11), 1250. doi: 10.1002/jccs.201700255 doi: 10.1002/jccs.201700255

    27. [27]

      Li, B.; Lane, L. A. WIREs Nanomed Nanobiotechnol. 2019, 11, e1542. doi: 10.1002/wnan.1542 doi: 10.1002/wnan.1542

    28. [28]

      Park, J. E.; Kim, M.; Hwang, J. H.; Nam, J. M. Small Methods 2017, 1, 1600032. doi: 10.1002/smtd.201600032 doi: 10.1002/smtd.201600032

    29. [29]

      Bouché, M.; Hsu, J. C.; Dong, Y. X.; C. Kim, J.; Taing, K.; Cormode, D. P. Bioconjugate Chem. 2020, In press. doi: 10.1021/acs.bioconjchem.9b00669

    30. [30]

      Nguyen-Tri, P.; Ouellet-Plamondon, C.; Rtimi, S.; Assadi, A. A.; Nguyen, T. A. Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications; Mohapatra, S.; Nguyen, T. A.; Nguyen-Tri, P. Eds.; Elsevier: Amsterdam, 2019; pp. 51–63.

    31. [31]

      Li, X. H.; Zhu, J. M.; Wei, B. Q. Chem. Soc. Rev. 2016, 45, 3145. doi: 10.1039/c6cs00195e doi: 10.1039/c6cs00195e

    32. [32]

      He, W. W.; Han, X. N.; Jia, H. M.; Cai, J. H.; Zhou, Y. L.; Zheng, Z. Sci. Rep. 2017, 7, 40103. doi: 10.1038/srep40103 doi: 10.1038/srep40103

    33. [33]

      Wang, C.; Yin, H. F.; Chan, R.; Peng, S.; Dai, S.; Sun, S. H. Chem. Mater. 2009, 21 (3), 433. doi: 10.1021/cm802753j doi: 10.1021/cm802753j

    34. [34]

      Wei, J. J.; Guo, Y. J.; Li, J. Z.; Yuan, M. K.; Long, T. F.; Liu, Z. D. Anal. Chem. 2017, 89, 9781. doi: 10.1021/acs.analchem.7b01723 doi: 10.1021/acs.analchem.7b01723

    35. [35]

      Shevchenko, G. P.; Zhuravkov, V. A.; Shishko, G. V. SN Appl. Sci. 2019, 1, 1192. doi: 10.1007/s42452-019-1143-7 doi: 10.1007/s42452-019-1143-7

    36. [36]

      Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Nat. Commun. 2014, 5, 4948. doi: 10.1038/ncomms5948 doi: 10.1038/ncomms5948

    37. [37]

      Mitsudome, T.; Yamamoto, M.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. J. Am. Chem. Soc. 2015, 137, 13452. doi: 10.1021/jacs.5b07521 doi: 10.1021/jacs.5b07521

    38. [38]

      Yin, Z.; Wang, Y.; Song, C. Q.; Zheng, L.H.; Ma, N.; Liu, X.; Li, S. W.; Lin, L. L.; Li, M. Z.; Xu, Y.; et al. J. Am. Chem. Soc. 2018, 140, 864. doi: 10.1021/jacs.7b11293 doi: 10.1021/jacs.7b11293

    39. [39]

      Hutzler, A.; Schmutzler, T.; Jank, M. P. M.; Branscheid, R.; Spiecker, T. U. E.; Frey, L. Nano Lett. 2018, 18, 7222. doi: 10.1021/acs.nanolett.8b03388 doi: 10.1021/acs.nanolett.8b03388

    40. [40]

      Kumar, D.; Lee, S. B.; Park, C. H.; Kim, C. S. ACS Appl. Mater. Interfaces 2018, 10, 389. doi: 10.1021/acsami.7b12119 doi: 10.1021/acsami.7b12119

    41. [41]

      Chen, Y.; Fan, Z. X.; Luo, Z. M.; Liu, X. Z.; Lai, Z. C.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. Adv. Mater. 2017, 29, 1701331. doi: 10.1002/adma.201701331 doi: 10.1002/adma.201701331

    42. [42]

      Lu, Q.; Wang, A.; Gong, Y.; Hao, W.; Cheng, H.; Chen, J.; Li, B.; Yang, N.; Niu, W.; Wang, J.; et al. Nat. Chem. 2018, 10, 456. doi: 10.1038/s41557-018-0012-0 doi: 10.1038/s41557-018-0012-0

    43. [43]

      Liu, F.; Goyal, S.; Forrester, M.; Ma, T.; Miller, K.; Mansoorieh, Y.; Henjum, J.; Zhou, L.; Cochran, E.; Jiang, S. Nano Lett. 2019, 19, 1587. doi: 10.1021/acs.nanolett.8b04464 doi: 10.1021/acs.nanolett.8b04464

    44. [44]

      Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Science 2010, 327, 1634. doi: 10.1126/science.1184769 doi: 10.1126/science.1184769

    45. [45]

      Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Adv. Mater. 2014, 26, 1387. doi: 10.1002/adma.201304652 doi: 10.1002/adma.201304652

    46. [46]

      Gui, J.; Ji, M.; Liu, J.; Xu, M.; Zhang, J. T.; Zhu, H. S. Angew. Chem. Int. Ed. 2015, 54, 3683. doi: 10.1002/anie.201410053 doi: 10.1002/anie.201410053

    47. [47]

      Liu, J.; Feng, J. W.; Gui, J.; Chen, T.; Xu, M.; Wang, H. Z.; Dong, H. F.; Chen, H. L.; Li, X. W.; Wang, L.; et al. Nano Energy 2018, 48, 44. doi: 10.1016/j.nanoen.2018.02.040 doi: 10.1016/j.nanoen.2018.02.040

    48. [48]

      Ji, M.; Xu, M.; Zhang, W.; Yang, Z.; Huang, L.; Liu, J.; Zhang, Y.; Gu, L.; Yu, Y.; Hao, W.; et al. Adv. Mater. 2016, 28, 3094. doi: 10.1002/adma.201503201 doi: 10.1002/adma.201503201

    49. [49]

      Huang, L.; Zheng, J. J.; Huang, L. L.; Liu, J.; Ji, M. W.; Yao, Y.; Xu, M.; Liu, J. J.; Zhang, J. T.; Li, Y. D. Chem. Mater. 2017, 29, 2355. doi: 10.1021/acs.chemmater.7b00046 doi: 10.1021/acs.chemmater.7b00046

    50. [50]

      Ji, M. W.; Li, X. Y.; Wang, H. Z.; Huang, L.; Xu, M.; Liu, J.; Liu, J. J.; Wang, J.; Zhang, J. T. Nano Res. 2017, 10 (9), 2977. doi: 10.1007/s12274-017-1508-4 doi: 10.1007/s12274-017-1508-4

    51. [51]

      Li, Y. T.; Jin, J.; Wang, D. W.; Lv, J. W.; Hou, K.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Nano Res. 2018, 11 (6), 3294. doi: 10.1007/s12274-017-1874-y doi: 10.1007/s12274-017-1874-y

    52. [52]

      Cai, W.; Wang, J. Q.; Liu, H.; Chen, W.; Wang, J.; Du, L. P.; Hu, J.; Wu, C. S. J. Alloys Compd. 2018, 748, 193. doi: 10.1016/j.jallcom.2018.03.133 doi: 10.1016/j.jallcom.2018.03.133

    53. [53]

      Deng, X. R.; Liang, S.; Cai, X. C.; Huang, S. S.; Cheng, Z. Y.; Shi, Y. S.; Pang, M. L.; Ma, P. A.; Lin, J. Nano Lett. 2019, 19 (10), 6772. doi: 10.1021/acs.nanolett.9b01716 doi: 10.1021/acs.nanolett.9b01716

    54. [54]

      Deng, X. R.; Li, K.; Cai, X. C.; Liu, B.; Wei, Y.; Deng, K. R.; Xie, Z. X.; Wu, Z. J.; Ma, P. A.; Hou, Z. Y.; et al. Adv. Mater. 2017, 29, 1701266. doi: 10.1002/adma.201701266 doi: 10.1002/adma.201701266

    55. [55]

      Osterrieth, J. W. M.; Wright, D.; Noh, H.; Kung, C. W.; Vulpe, D.; Li, A.; Park, J. E.; Duyne, R. P. V.; Moghadam, P. Z.; Baumberg, J. J.; et al. J. Am. Chem. Soc. 2019, 141, 3893. doi: 10.1021/jacs.8b11300 doi: 10.1021/jacs.8b11300

    56. [56]

      Liu, B.; Mosa, I. M.; Song, W.; Zheng, H.; Kuo, C.; Rusling, J. F.; Suib, S. L.; He, J. J. Mater. Chem. A 2016, 4, 6447. doi: 10.1039/c6ta02017h doi: 10.1039/c6ta02017h

    57. [57]

      Wei, L.; Li, C. Q.; Chu, H. B.; Li, Y. Dalton Trans. 2011, 40, 2332. doi: 10.1039/C0DT01073A doi: 10.1039/C0DT01073A

    58. [58]

      Lin, X. D.; Uzayisenga, V.; Li, J. F.; Fang, P. P.; Wu, D. Y.; Ren, B.; Tian, Z. Q. J. Raman Spectrosc. 2012, 43, 40. doi: 10.1002/jrs.3007 doi: 10.1002/jrs.3007

    59. [59]

      Yi, X.; Chen, L.; Zhong, X. Y.; Gao, R. L.; Qian, Y. T.; Wu, F.; Song, G. S.; Chai, Z. F.; Liu, Z.; Yang, K. Nano Res. 2016, 9, 3267. doi: 10.1007/s12274-016-1205-8 doi: 10.1007/s12274-016-1205-8

    60. [60]

      Zhou, X.; Zhao, G. F.; Chen, M. H.; Gao, W.; Zhou, X. J.; Xie, X. G.; Yang, L.; Du, G. B. ACS Sustainable Chem. Eng. 2018, 6, 3948. doi: 10.1021/acssuschemeng.7b04313 doi: 10.1021/acssuschemeng.7b04313

    61. [61]

      Liang, R. J.; Liu, L. L.; He, H. M.; Chen, Z. K.; Han, Z. Q.; Luo, Z. Y.; Wu, Z. H.; Zheng, M. B.; Ma, Y. F.; Cai, L. T. Biomaterials 2018, 177, 149. doi: 10.1016/j.biomaterials.2018.05.051 doi: 10.1016/j.biomaterials.2018.05.051

    62. [62]

      Wang, F. Y.; Li, Y. L.; Han, Y. M.; Ye, Z. J.; Wei, L.; Luo, H. B.; Xiao, L. H. Anal. Chem. 2019, 91, 6329. doi: 10.1021/acs.analchem.9b01300 doi: 10.1021/acs.analchem.9b01300

    63. [63]

      Ling, Y. Y.; Zhang, D.; Cui, X. M.; Wei, M. M.; Zhang, T.; Wang, J. F.; Xiao, L. H.; Xia, Y. S. Angew. Chem. Int. Ed. 2019, 58, 10542. doi: 10.1002/anie.201902987 doi: 10.1002/anie.201902987

    64. [64]

      Hu, S. H.; Liu, X. Y.; Wang, C. R.; Camargo, P. H. C.; Wang, J. L. ACS Appl. Mater. Interfaces 2019, 11, 17444. doi: 10.1021/acsami.9b03879 doi: 10.1021/acsami.9b03879

    65. [65]

      Zhu, K.; Wang, C. R.; Camargo, P. H. C.; Wang, J. L. J. Mater. Chem. A 2019, 7, 925. doi: 10.1039/c8ta09785b doi: 10.1039/c8ta09785b

    66. [66]

      Wu, R.; Min, Q. H.; Guo, J. J.; Zheng, T. T.; Jiang, L. P.; Zhu, J. J. Anal. Chem. 2019, 91, 4608. doi: 10.1021/acs.analchem.8b05877 doi: 10.1021/acs.analchem.8b05877

    67. [67]

      Zeng, J. B.; Gong, M. F.; Wang, D. W.; Li, M. M.; Xu, W. J.; Li, Z. W.; Li, S. C.; Zhang, D.; Yan, Z. F.; Yin, Y. D. Nano Lett. 2019, 19, 3011. doi: 10.1021/acs.nanolett.9b00171 doi: 10.1021/acs.nanolett.9b00171

    68. [68]

      Li, M. J.; Zheng, Y. N.; Liang, W. B.; Yuan, R.; Chai, Y. Q. ACS Appl. Mater. Interfaces 2017, 9, 42111. doi: 10.1021/acsami.7b13894 doi: 10.1021/acsami.7b13894

    69. [69]

      Zeng, L. P.; Li, K. Z.; Wang, H.; Yu, H.; Zhu, X.; Wei, Y. G.; Ning, P. H.; Shi, C. Z.; Luo, Y. M. J. Phys. Chem. C 2017, 121, 12696. doi: 10.1021/acs.jpcc.7b01363 doi: 10.1021/acs.jpcc.7b01363

    70. [70]

      Li, D.; Jiang, L. M.; Piper, J. A.; Maksymov, I. S.; Greentree, A. D.; Wang, E. K.; Wang, Y. L. ACS Sens. 2019, 4, 2507. doi: 10.1021/acssensors.9b01211 doi: 10.1021/acssensors.9b01211

    71. [71]

      Ortiz, N.; Hong, S. J.; Fonseca, F.; Liu, Y.; Wang, G. F. J. Phys. Chem. C 2017, 121, 1876. doi: 10.1021/acs.jpcc.6b12024 doi: 10.1021/acs.jpcc.6b12024

    72. [72]

      Hinman, J. G.; Turner, J. G.; Hofmann, D. M.; Murphy, C. J. Chem. Mater. 2018, 30 (20), 7255. doi: 10.1021/acs.chemmater.8b03341 doi: 10.1021/acs.chemmater.8b03341

    73. [73]

      Zeng, J. Y.; Wang, X. S.; Zhang, M. K.; Li, Z. H.; Gong, D.; Pan, P.; Huang, L.; Cheng, S. X.; Cheng, H.; Zhang, X. Z. ACS Appl. Mater. Interfaces 2017, 9, 43143. doi: 10.1021/acsami.7b14881 doi: 10.1021/acsami.7b14881

    74. [74]

      Bao, H. M.; Zhang, H. W.; Zhou, L.; Fu, H.; Liu, G. Q.; Li, Y.; Cai, W. P. ACS Appl. Mater. Interfaces 2019, 11, 28145. doi: 10.1021/acsami.9b05878 doi: 10.1021/acsami.9b05878

    75. [75]

      Parandhaman, T.; Pentela, N.; Ramalingam, B.; Samanta, D.; Das, S. K. ACS Sustainable Chem. Eng. 2017, 5, 489. doi: 10.1021/acssuschemeng.6b01862 doi: 10.1021/acssuschemeng.6b01862

    76. [76]

      Sun, H.; He, J. T.; Wang, J. Y.; Zhang, S. Y.; Liu, C. C.; Sritharan, T.; Mhaisalkar, S.; Han, M. Y.; Wang, D.; Chen, H. Y. J. Am. Chem. Soc. 2013, 135, 9099. doi: 10.1021/ja4035335 doi: 10.1021/ja4035335

    77. [77]

      Huang, L. Ao, L. J.; Hu, D. H.; Wang, W.; Sheng, Z. H.; Su, W. Chem. Mater. 2016, 28 (16), 5896. doi: 10.1021/acs.chemmater.6b02413 doi: 10.1021/acs.chemmater.6b02413

    78. [78]

      Yang, Z. Z.; Ding, X. G.; Jiang, J. Nano Res. 2016, 9 (3), 787. doi: 10.1007/s12274-015-0958-9 doi: 10.1007/s12274-015-0958-9

    79. [79]

      Zhou, J. J.; Wang, P.; Wang, C. X.; Goh, Y. T.; Fang, Z.; Messersmith, P. B.; Duan, H. W. ACS Nano 2015, 9 (7), 6951. doi: 10.1021/acsnano.5b01138 doi: 10.1021/acsnano.5b01138

    80. [80]

      Xia, Y. S; Nguyen, T. D.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z. Y; Glotzer, S. C.; Kotov, N. A. Nat. Nanotechnol. 2011, 6, 580. doi: 10.1038/NNANO.2011.121 doi: 10.1038/NNANO.2011.121

    81. [81]

      Zhu, H.; Wang, Y.; Chen, C.; Ma, M. R; Zeng, J. F.; Li, S. Z.; Xia, Y. S.; Gao, M. Y. ACS Nano 2017, 11, 8273. doi: 10.1021/acsnano.7b03369 doi: 10.1021/acsnano.7b03369

    82. [82]

      Xia, Y. S.; Song, L.; Zhu, C. Q. Anal. Chem. 2011, 83, 1401. doi: 10.1021/ac1028825 doi: 10.1021/ac1028825

    83. [83]

      Chen, H. D.; Xia, Y. S. Anal. Chem. 2014, 86, 11062. doi: 10.1021/ac5031804 doi: 10.1021/ac5031804

    84. [84]

      Xu, J.; Yang, W. M.; Huang, S. J.; Yin, H.; Zhang, H.; Radjenovic, P.; Yang, Z. L.; Tian, Z. Q.; Li, J. F. Nano Energy 2018, 49, 363. doi: 10.1016/j.nanoen.2018.04.048 doi: 10.1016/j.nanoen.2018.04.048

    85. [85]

      Maji, S. K.; Yu, S. B.; Chung, K.; Ramasamy, M. S.; Lim, J. W.; Wang, J. F.; Lee, H.; Kim, D. H. ACS Appl. Mater. Interfaces 2018, 10, 42068. doi: 10.1021/acsami.8b15443 doi: 10.1021/acsami.8b15443

    86. [86]

      Lou, L.; Yu, K.; Zhang, Z. L.; Huang, R.; Zhu, J. Z.; Wang, Y. T.; Zhu, Z. Q. Nano Res. 2012, 5, 272. doi: 10.1007/s12274-012-0207-4 doi: 10.1007/s12274-012-0207-4

    87. [87]

      Qu, H. N.; Yang, L. R.; Yu, J. M.; Wang, L.; Liu, H. Z. Ind. Eng. Chem. Res. 2018, 57, 9448. doi: 10.1021/acs.iecr.8b00894 doi: 10.1021/acs.iecr.8b00894

    88. [88]

      Zhao, Y.; Huang, Y. C.; Zhu, H.; Zhu, Q. Q.; Xia, Y. S. J. Am. Chem. Soc. 2016, 138, 16645. doi: 10.1021/jacs.6b07590 doi: 10.1021/jacs.6b07590

    89. [89]

      Zhang, L. B.; Jean, S. R.; Li, X. Y.; Sack, T. J.; Wang, Z. J.; Ahmed, S.; Chan, G.; Das, J.; Zaragoza, A.; Sargent, E. H.; Kelley, S. O. Nano Lett. 2018, 18, 6222. doi: 10.1021/acs.nanolett.8b02263 doi: 10.1021/acs.nanolett.8b02263

    90. [90]

      Sun, J. F.; Zhang, X. Y.; Li, T.; Xie, J. J.; Shao, B.; Xue, D. S.; Tang, X.; Li, H.; Liu, Y. H. Anal. Chem. 2019, 91, 6454. doi: 10.1021/acs.analchem.8b04458 doi: 10.1021/acs.analchem.8b04458

    91. [91]

      Sun, M. Z.; Hao, T. T.; Li, X. Y.; Qu, A. H.; Xu, L. G.; Hao, C. L.; Xu, C. L.; Kuang, H. Nat. Commun. 2018, 9, 4494. doi: 10.1038/s41467-018-06946-z doi: 10.1038/s41467-018-06946-z

    92. [92]

      Liu, T. J.; Besteiro, L. V.; Liedl, T.; Correa-Duarte, M. A.; Wang, Z. M.; Govorov, A. O. Nano Lett. 2019, 19, 1395. doi: 10.1021/acs.nanolett.8b05179 doi: 10.1021/acs.nanolett.8b05179

    93. [93]

      Hu, L.; Liedl, T.; Martens, K.; Wang, Z. M.; Govorov, A. O. ACS Photonics 2019, 6, 749. doi: 10.1021/acsphotonics.8b01676 doi: 10.1021/acsphotonics.8b01676

    94. [94]

      Jiang Q.; Liu Q.; Shi Y. F.; Wang, Z. G.; Zhan, P. F.; Liu, J. B.; Liu, C.; Wang, H.; Shi, X. H; Zhang, L.; et al. Nano Lett. 2017, 17, 7125. doi: 10.1021/acs.nanolett.7b03946 doi: 10.1021/acs.nanolett.7b03946

    95. [95]

      Sun, M. Z.; Qu, A. H.; Hao, C. L.; Wu, X. L.; Xu, L. G.; Xu, C. L.; Kuang, H. Adv. Mater. 2018, 30, 1804241. doi: 10.1002/adma.201804241 doi: 10.1002/adma.201804241

    96. [96]

      Kim, Y. K.; Bang, Y. B.; Lee, A. H.; Song, Y. K. ACS Nano 2019, 13, 1183. doi: 10.1021/acsnano.8b06170 doi: 10.1021/acsnano.8b06170

    97. [97]

      Ismaili, H.; Lagugne-Labarthet, F.; Workentin, M. S. Chem. Mater. 2011, 23, 1519. doi: 10.1021/cm103284g doi: 10.1021/cm103284g

    98. [98]

      Cheng, X.; Sun, R.; Yin, L.; Chai, Z.; Shi, H.; Gao, M. Adv. Mater. 2017, 29, 1604894. doi: 10.1002/adma.201604894 doi: 10.1002/adma.201604894

    99. [99]

      Liu, Y.; Kou, Q.; Wang, D.; Chen, L.; Sun, Y.; Lu, Z.; Zhang, Y.; Wang, Y.; Yang, J.; Xing, S. G. J. Mater. Sci. 2017, 52, 10163. doi: 10.1007/s10853-017-1200-9 doi: 10.1007/s10853-017-1200-9

    100. [100]

      Chen, Y.; Wu, T.; Xing, G.; Kou, Y.; Li, B.; Wang, X.; Gao, M.; Chen, L.; Wang, Y.; Yang, J.; et al. Ind. Eng. Chem. Res. 2019, 58 (33), 15151. doi: 10.1021/acs.iecr.9b02777 doi: 10.1021/acs.iecr.9b02777

    101. [101]

      Song, J. B.; Wu, B. H.; Zhou, Z. J.; Zhu, G. Z.; Liu, Y. J.; Yang, Z.; Lin, L.; Yu, G. C.; Zhang, F. W.; Zhang, G. F.; et al. Angew. Chem. Int. Ed. 2017, 56, 8110. doi: 10.1002/anie.201702572 doi: 10.1002/anie.201702572

    102. [102]

      Song, J. B.; Lin, L.; Yang, Z.; Zhu, R.; Zhou, Z. J.; Li, Z. W.; Wang, F.; Chen, J. Y.; Yang, H. H.; Chen, X. Y. J. Am. Chem. Soc. 2019, 141, 8158. doi: 10.1021/jacs.8b13902 doi: 10.1021/jacs.8b13902

    103. [103]

      Klein, S.; Stiegler, L. M. S.; Harreiss, C.; Distel, L. V. R.; Neuhuber, W.; Spiecker, E.; Hirsch, A.; Kryschi, C. ACS Appl. Bio. Mater. 2018, 1, 2002. doi: 10.1021/acsabm.8b00511 doi: 10.1021/acsabm.8b00511

    104. [104]

      Klein, S.; Harreiß, C.; Menter, C.; Hümmer, J. L.; Distel, L. V. R.; Meyer, K.; Hock, R.; Kryschi, C. ACS Appl. Mater. Interfaces 2018, 10, 17071. doi: 10.1021/acsami.8b03660 doi: 10.1021/acsami.8b03660

    105. [105]

      Klein, S.; Smuda, M.; Harreiß, C.; Menter, C.; Distel, L. V. R.; Kryschi, C. ACS Appl. Mater. Interfaces 2019, 11, 39613. doi: 10.1021/acsami.9b13877 doi: 10.1021/acsami.9b13877

    106. [106]

      Cui, J. B.; Jiang, R.; Guo, C.; Bai, X. L.; Xu, S. Y.; Wang, L. Y. J. Am. Chem. Soc. 2018, 140, 5890. doi: 10.1021/jacs.8b00368 doi: 10.1021/jacs.8b00368

    107. [107]

      Huang, Q.; Zhang, S. H.; Zhang, H.; Han, Y. B.; Liu, H. H.; Ren, F.; Sun, Q.; Li, Z.; Gao, M. Y. ACS Nano 2019, 13, 1342. doi: 10.1021/acsnano.8b06795 doi: 10.1021/acsnano.8b06795

    108. [108]

      Li, S. N.; Zhang, L. Y.; Chen, X. J.; Wang, T. T.; Zhao, Y.; Li, L.; Wang, C. G. ACS Appl. Mater. Interfaces 2018, 10, 24137. doi: 10.1021/acsami.8b06527 doi: 10.1021/acsami.8b06527

    109. [109]

      Chen, Y. W.; Su, Y. L.; Hu, S. H.; Chen, S. Y. Adv. Drug Delivery Rev. 2016, 105, 190. doi: 10.1016/j.addr.2016.05.022 doi: 10.1016/j.addr.2016.05.022

    110. [110]

      Younis, M. R.; Wang, C.; An, R. B.; Wang, S. J.; Younis, M. A.; Li, Z. Q.; Wang, Y.; Ihsan, A.; Ye, D. J.; Xia, X. H. ACS Nano 2019, 13, 2544. doi: 10.1021/acsnano.8b09552 doi: 10.1021/acsnano.8b09552

    111. [111]

      Tang, W. T.; Dong, Z. L.; Zhang, R.; Yi, X.; Yang, K.; Jin, M. L.; Yuan, C.; Xiao, Z. D.; Liu, Z.; Cheng, L. ACS Nano 2019, 13, 284. doi: 10.1021/acsnano.8b05982 doi: 10.1021/acsnano.8b05982

    112. [112]

      Liu, C. H.; Dong, H. F.; Wu, N. Q.; Cao, Y.; Zhang, X. J. ACS Appl. Mater. Interfaces 2018, 10, 6991. doi: 10.1021/acsami.8b00112 doi: 10.1021/acsami.8b00112

    113. [113]

      Chang, Y.; Cheng, Y.; Feng, Y. L.; Jian, H.; Wang, L.; Ma, X. M.; Li, X.; Zhang, H. Y. Nano Lett. 2018, 18, 886. doi: 10.1021/acs.nanolett.7b04162 doi: 10.1021/acs.nanolett.7b04162

    114. [114]

      Wang, L.; Chang, Y.; Feng, Y. L.; Li, X.; Cheng, Y.; Jian, H.; Ma, X. M.; Zheng, R. X.; Wu, X. Q.; Xu, K. Q.; Zhang, H. Y. Nano Lett. 2019, 19, 6800. doi: 10.1021/acs.nanolett.9b01869 doi: 10.1021/acs.nanolett.9b01869

    115. [115]

      Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanomedicine, 2011, 6 (4), 715. doi: 10.2217/nnm.11.19 doi: 10.2217/nnm.11.19

    116. [116]

      Fang, R. H.; Hu, C. M. J.; Luk, B. T.; Gao, W. W.; Copp, J. A.; Tai, Y. Y.; O'Connor, D. E.; Zhang, L. F. Nano Lett. 2014, 14 (4), 2181. doi: 10.1021/nl500618u doi: 10.1021/nl500618u

    117. [117]

      Toy, R.; Roy, K. Bioeng. Transl. Med. 2016, 1, 47. doi: 10.1002/btm2.10005 doi: 10.1002/btm2.10005

    118. [118]

      Yang, R.; Xu, J.; Xu, L. G.; Sun, X. Q.; Chen, Q.; Zhao, Y. H.; Peng, R.; Liu, Z. ACS Nano 2018, 12, 5121. doi: 10.1021/acsnano.7b09041 doi: 10.1021/acsnano.7b09041

    119. [119]

      Zhang, Z. Q.; Kim, Y. M.; Song, S. C. ACS Appl. Mater. Interfaces 2019, 11, 34634. doi: 10.1021/acsami.9b10182 doi: 10.1021/acsami.9b10182

    120. [120]

      Zimmermann, M.; Zimmermann-Kogadeeva, M.; Wegmann, R. Goodman, A. L. Nature 2019, 570, 462. doi: 10.1038/s41586-019-1291-3 doi: 10.1038/s41586-019-1291-3

    121. [121]

      Ali, M. R. K.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.; Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P.; et al. Proc. Natl. Acad. Sci. 2017, 114 (15), E3110. doi: 10.1073/pnas.1619302114 doi: 10.1073/pnas.1619302114

    122. [122]

      Wang, X. D.; Guo, L. R.; Zhang, S. H.; Chen, Y.; Chen, Y. T.; Zheng, B. B.; Sun, J. W.; Qian, Y. Y.; Chen, Y. X.; Yan, B. F.; et al. ACS Nano 2019, 13, 5720. doi: 10.1021/acsnano.9b01154 doi: 10.1021/acsnano.9b01154

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  28
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2020-09-15
  • 收稿日期:  2019-12-02
  • 接受日期:  2020-01-06
  • 修回日期:  2019-12-27
  • 网络出版日期:  2020-02-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章