
Citation: Liu Ziyi, Xia Miaoren, Chai Zhifang, Wang Dongqi. Parameterization and Validation of AMBER Force Field for Np4+, Am3+, and Cm3+[J]. Acta Physico-Chimica Sinica, 2020, 36(11): 190803. doi: 10.3866/PKU.WHXB201908035

镎(Ⅳ)、镅(Ⅲ)、锔(Ⅲ)的AMBER力场参数化及评估
English
Parameterization and Validation of AMBER Force Field for Np4+, Am3+, and Cm3+

-
Key words:
- An3+
- / An4+
- / AMBER force field
-
-
[1]
Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham Iii, T. E.; DeBolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. Comput. Phys. Commun. 1995, 91 (1–3), 1. doi: 10.1016/0010-4655(95)00041-D
-
[2]
Schmid, N.; Christ, C. D.; Christen, M.; Eichenberger, A. P.; van Gunsteren, W. F. Comput. Phys. Commun. 2012, 183 (4), 890. doi: 10.1016/j.cpc.2011.12.014
-
[3]
Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I. J. Comput. Chem. 2010, 31 (4), 671. doi: 10.1002/jcc.21367
-
[4]
Buehl, M.; Wipff, G. Chem. Phys. Chem. 2011, 12 (17), 3095. doi: 10.1002/cphc.201100458
-
[5]
Xia, M. R.; Liu, Z. Y.; Chai, Z. F.; Wang, D. Q. J. Nucl. Radiochem. 2019, 41 (1), 91. doi: 10.7538/hhx.2019.41.01.0091
-
[6]
Guilbaud, P.; Wipff, G. J. Phys. Chem. 1993, 97 (21), 5685. doi: 10.1021/j100123a037
-
[7]
Guilbaud, P.; Wipff, G. J. Mol. Struct. (Theochem) 1996, 366 (1–2), 55. doi: 10.1016/0166-1280(96)04496-X
-
[8]
Pomogaev, V.; Tiwari, S. P.; Rai, N.; Goff, G. S.; Runde, W.; Schneider, W. F.; Maginn, E. J. Phys. Chem. Chem. Phys. 2013, 15 (38), 15954. doi: 10.1039/c3cp52444b
-
[9]
Li, P.; Roberts, B. P.; Chakravorty, D. K.; Merz, K. M., Jr. J. Chem. Theory Comput. 2013, 9 (6), 2733. doi: 10.1021/ct400146w
-
[10]
Li, P.; Song, L. F.; Merz, K. M., Jr. J. Phy. Chem. B. 2014, 119 (3), 883. doi: 10.1021/jp505875v
-
[11]
Hagberg, D.; Bednarz, E.; Edelstein, N. M.; Gagliardi, L. J. Am. Chem. Soc. 2007, 129 (46), 14136. doi: 10.1021/ja075489b
-
[12]
Duvail, M.; Martelli, F.; Vitorge, P.; Spezia, R. J. Chem. Phys. 2011, 135 (4), 044503. doi: 10.1063/1.3613699
-
[13]
Li, P.; Merz, K. M., Jr. Chem. Rev. 2017, 117 (3), 1564. doi: 10.1021/acs.chemrev.6b00440
-
[14]
Jones, J. E. Proc. Royal Soc. A 1924, 106 (738), 463. doi: 10.1098/rspa.1924.0082
-
[15]
Stokes, R. H. J. Am. Chem. Soc. 1964, 86 (6), 979. doi: 10.1021/ja01060a002
-
[16]
Lemire, R. J. Chemical Thermodynamics of Neptunium and Plutonium; Elsevier: Amsterdam, The Netherlands, 2001; Vol. 4, pp. 85–293.
-
[17]
Aoyagi, H.; Kitatsuji, Y.; Yoshida, Z.; Kihara, S. Anal. Chim. Acta 2005, 538 (1–2), 283. doi: 10.1016/j.aca.2005.02.035
-
[18]
Denning, R. G.; Norris, J. O. W.; Brown, D. Mol. Phys. 1982, 46 (2), 287. doi: 10.1080/00268978200101261
-
[19]
Skanthakumar, S.; Antonio, M. R.; Soderholm, L. Inorg. Chem. 2008, 47 (11), 4591. doi: 10.1021/ic702478w
-
[20]
Allen, P. G.; Bucher, J. J.; Shuh, D. K.; Edelstein, N. M.; Reich, T. Inorg. Chem. 1997, 36 (21), 4576. doi: 10.1021/ic970502m
-
[21]
Ikeda-Ohno, A.; Hennig, C.; Rossberg, A.; Funke, H.; Scheinost, A. C.; Bernhard, G.; Yaita, T. Inorg. Chem. 2008, 47 (18), 8294. doi: 10.1021/ic8009095
-
[22]
Hennig, C.; Ikeda-Ohno, A.; Tsushima, S.; Scheinost, A. C. Inorg. Chem. 2009,48 (12), 5350. doi: 10.1021/ic9003005
-
[23]
Stumpf, T.; Hennig, C.; Bauer, A.; Denecke, M. A.; Fanghänel, T. Radiochim. Acta 2004, 92 (3), 133. doi: 10.1524/ract.92.3.133.30487
-
[24]
Allen, P.; Bucher, J.; Shuh, D.; Edelstein, N.; Craig, I. Inorg. Chem. 2000, 39 (3), 595. doi: 10.1021/ic9905953
-
[25]
Lindqvist-Reis, P.; Klenze, R.; Schubert, G.; Fanghänel, T. J. Phys. Chem. B 2005,109 (7), 3077. doi: 10.1021/jp045516+
-
[26]
Skanthakumar, S.; Antonio, M. R.; Wilson, R. E.; Soderholm, L. Inorg. Chem. 2007, 46 (9), 3485. doi: 10.1021/ic061798b
-
[27]
Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. Comput. Mol. Sci. 2013, 3 (2), 198. doi: 10.1002/wcms.1121
-
[28]
Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91 (24), 6269. doi: 10.1021/j100308a038
-
[29]
Li, P.; Song, L. F.; Merz, K. M., Jr. J. Chem. Theory Comput. 2015, 11 (4), 1645. doi: 10.1021/ct500918t
-
[30]
Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Am. Chem. Soc. 2001, 222, U403.
-
[31]
Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2000, 21 (2), 132. doi: 10.1002/(SICI)1096-987X(20000130)21:2 < 132::AID-JCC5 > 3.0.CO; 2-P
-
[32]
Jakalian, A.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2002, 23 (16), 1623. doi: 10.1002/jcc.10128
-
[33]
Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103 (19), 8577. doi: 10.1063/1.470117
-
[34]
Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18 (12), 1463. doi: 10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO; 2-H
-
[35]
Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81 (8), 3684. doi: 10.1063/1.448118
-
[36]
Hahn, A. M.; Then, H. Phys. Rev. E 2009, 80 (3), 031111. doi: 10.1103/PhysRevE.80.031111
-
[37]
Impey, R. W.; Madden, P. A.; McDonald, I. R. J. Phys. Chem. 1983, 87 (25), 5071. doi: 10.1021/j150643a008
-
[38]
Eyring, H. J. Chem. Phys. 1935, 3 (2), 107. doi: 10.1063/1.1749604
-
[39]
Yang, T.; Bursten, B. E. Inorg. Chem. 2006, 45 (14), 5291. doi: 10.1021/ic0513787
-
[40]
Frick, R. J.; Pribil, A. B.; Hofer, T. S.; Randolf, B. R.; Bhattacharjee, A.; Rode, B. M. Inorg. Chem. 2009, 48 (9), 3993. doi: 10.1021/ic801554p
-
[41]
Moll, H.; Denecke, M.; Jalilehvand, F.; Sandström, M.; Grenthe, I. Inorg. Chem. 1999, 38 (8), 1795. doi: 10.1021/ic981362z
-
[42]
Odoh, S. O.; Bylaska, E. J.; De Jong, W. A. J. Phy. Chem. A 2013, 117 (47), 12256. doi: 10.1021/jp4096248
-
[43]
Ankudinov, A.; Conradson, S.; de Leon, J. M.; Rehr, J. Phys. Rev. B 1998, 57 (13), 7518. doi: doi.org/ 10.1103/PhysRevB.57.7518
-
[44]
Amador, D. H. T.; Sambrano, J. R.; Gargano, R.; de Macedo, L. G. M. J. Mol. Model. 2017, 23 (3), 69. doi: 10.1007/s00894-017-3252-9
-
[45]
Wilson, R. E.; Skanthakumar, S.; Burns, P. C.; Soderholm, L. Angew. Chem. Int. Ed. 2007, 46 (42), 8043. doi: 10.1002/anie.200702872
-
[46]
Yang, T.; Tsushima, S.; Suzuki, A. J. Phys. Chem. A 2001, 105 (45), 10439. doi: 10.1021/jp012387d
-
[47]
Atta-Fynn, R.; Bylaska, E. J.; Schenter, G. K.; De Jong, W. A. J. Phy. Chem. A 2011, 115 (18), 4665. doi: 10.1021/jp201043f
-
[48]
Torapava, N.; Persson, I.; Eriksson, L.; Lundberg, D. Inorg. Chem. 2009, 48 (24), 11712. doi: 10.1021/ic901763s
-
[49]
Smirnov, P. R.; Trostin, V. N. Russ. J. Gen. Chem. 2012, 82 (7), 1204. doi: 10.1134/S1070363212070031
-
[50]
Spezia, R.; Jeanvoine, Y.; Vuilleumier, R. J. Mol. Model. 2014, 20 (8), doi: 10.1007/s00894-014-2398-y
-
[51]
Fourest, B.; Duplessis, J.; David, F. J. Less Common. Met. 1983, 92 (1), 17. doi: 10.1016/0022-5088(83)90220-5
-
[52]
Farkas, I.; Grenthe, I.; Bányai, I. J. Phys. Chem. A 2000, 104 (6), 1201. doi: 10.1021/jp992934j
-
[53]
Ruiz-Martínez, A.; Casanova, D.; Alvarez, S. Chem. Eur. J. 2008, 14 (4), 1291. doi: 10.1002/chem.200701137
-
[54]
Neu, M. P.; Sonnenberg, J. L.; Bursten, B. E. Actinide Research Quarterly 2004, 1, (available online: https://www.lanl.gov/orgs/nmt/nmtdo/AQarchive/04spring/classic.html).
-
[55]
Abbasi, A. Structural and Spectroscopic Studies of Solvated Metal Ions. Ph. D. Dissertation, Stockholm University, Stockholm, Sweden, 2005; pp. 54–68.
-
[56]
Goldman, S.; Morss, L. R. Can. J. Chem. 1975, 53 (18), 2695. doi: 10.1139/v75-382
-
[57]
David, F. H. Radiochim. Acta 2008, 96 (3), 135. doi: 10.1524/ract.2008.1470
-
[58]
David, F. H.; Vokhmin, V. New J. Chem. 2003, 27 (11), 1627. doi: 10.1039/B301272G
-
[59]
Marcus, Y. Chem. Soc. Faraday Trans. 1991, 87 (18), 2995. doi: 10.1039/FT9918702995
-
[60]
Kumar, N.; Seminario, J. M. J. Phys. Chem. A 2015, 119 (4), 689. doi: 10.1021/jp507613a
-
[61]
Li, B.; Dai, S., Jiang, D. -E. ACS Appl. Energy Mater. 2019, 2122. doi: 10.1021/acsaem.8b02157
-
[62]
Duvail, M.; Ruas, A.; Venault, L.; Moisy, P.; Guilbaud, P. Inorg. Chem. 2009, 49 (2), 519. doi: 10.1021/ic9017085
-
[63]
Ali, S. M.; Pahan, S.; Bhattacharyya, A.; Mohapatra, P. K. Phys. Chem. Chem. Phys. 2016, 18 (14), 9816. doi: 10.1039/C6CP00825A
-
[64]
Rammo, N. N.; Hamid, K. R.; Khaleel, B. A. J. Less Common Met. 1990, 162 (1), doi: 10.1016/0022-5088(90)90453-Q
-
[65]
Takao, K.; Kazama, H.; Ikeda, Y.; Tsushima, S. Angew. Chem. 2019, 131 (1), 246. doi: 10.1002/ange.201811731
-
[66]
Grigor'ev, M. S.; Budantseva, N. A.; Fedoseev, A. M. Russ. J. Coord. Chem. 2013, 39 (1), 87. doi: 10.1134/S1070328412090023
-
[67]
Felmy, A. R.; Rai, D.; Sterner, S. M.; Mason, M. J.; Hess, N. J.; Conradson, S. D. J. Solut. Chem. 1997, 26 (3), 233. doi: 10.1007/BF02767996
-
[68]
Hennig, C.; Ikeda-Ohno, A.; Emmerling, F.; Kraus, W.; Bernhard, G. Dalton Trans. 2010, 39 (15), 3744. doi: 10.1039/B922624A
-
[69]
Clark, D. L.; Conradson, S. D.; Keogh, D. W.; Palmer, P. D.; Scott, B. L.; Tait, C. D. Inorg. Chem. 1998, 37 (12), 2893. doi: 10.1021/ic971190q
-
[70]
Ekimoto, T.; Matubayasi, N.; Ikeguchi, M. J. Chem. Theory Comput. 2014, 11 (1), 215. doi: 10.1021/ct5008394
-
[1]
-

计量
- PDF下载量: 12
- 文章访问数: 1562
- HTML全文浏览量: 346