超快扫描量热技术表征高分子结晶动力学

何裕成 谢科锋 王优浩 周东山 胡文兵

引用本文: 何裕成, 谢科锋, 王优浩, 周东山, 胡文兵. 超快扫描量热技术表征高分子结晶动力学[J]. 物理化学学报, 2020, 36(6): 190508. doi: 10.3866/PKU.WHXB201905081 shu
Citation:  He Yucheng, Xie Kefeng, Wang Youhao, Zhou Dongshan, Hu Wenbing. Characterization of Polymer Crystallization Kinetics via Fast-Scanning Chip-Calorimetry[J]. Acta Physico-Chimica Sinica, 2020, 36(6): 190508. doi: 10.3866/PKU.WHXB201905081 shu

超快扫描量热技术表征高分子结晶动力学

    作者简介:



    胡文兵,1966年生。1995年在复旦大学获得博士学位;分别于1998–1999年赴德国弗莱堡大学物理系Strobl研究组、2000–2001年美国田纳西大学化学系Wunderlich研究组、2001–2003年荷兰物质科学研究院(FOM)原子与分子物理研究所Frenkel研究组从事博士后研究。现任南京大学教授。主要研究方向为采用蒙特卡洛分子模拟和Flash DSC方法研究高分子结晶机理及材料热导率表征;
    通讯作者: 胡文兵, wbhu@nju.edu.cn
  • 基金项目:

    国家自然科学基金(21474050, 21734005)以及教育部长江学者创新团队(IRT1252)和中科院交叉学科创新团队项目资助

摘要: 高分子结晶行为是高分子材料加工过程研究的热点,因为高分子组分和加工工艺控制着高分子结晶及其产物性能。差示扫描量热仪(DSC)是研究高分子结晶动力学常规手段。但是,普通DSC所能达到的最快降温速率一般无法抑制较快的样品结晶,结晶行为将在等温结晶动力学测试之前发生,因此可进行等温结晶的研究温度范围局限于较低结晶过冷度的高温区域。近年来,具有超快速升降温扫描速率和精准控温的快速扫描芯片量热仪(FSC,其商业化版本Flash DSC 1)得到了广泛应用。FSC可以抑制高分子样品在升降温过程中的结晶成核,避免对之后的结晶动力学测试产生影响。因此FSC技术将高分子结晶动力学的研究温度区间延伸至具有较大过冷度的低温区,加深了我们对高分子结晶成核机理以及高分子工业加工过程的理解。本文首先介绍了由初级成核方程描述的高分子结晶动力学原理,初级成核自由能位垒(ΔG*)和扩散活化能位垒(ΔU)分别控制了高低温区的结晶动力学。我们还总结了FSC技术的发展,包括氮化硅薄膜芯片技术、快速扫描量热仪、商业化Flash DSC 1在不同高分子结晶熔融行为研究中的应用。然后介绍表征高分子等温结晶动力学的方法,其中包括样品制备、质量估算、消除热历史、临界扫描速率的确定等,并举例介绍FSC在高分子结晶动力学研究中的应用,涵盖高分子总结晶动力学、结晶成核动力学、高分子焓松弛对结晶成核的影响、FSC联用技术等方面。应用举例中对应形貌和结晶信息,分析了通过FSC测试得到的结晶成核动力学特点。另外通过比较不同结构特点的高分子,总结了我们对结晶动力学行为的基本理解。总之,FSC技术是一种能够提供相转变动力学和热力学信息的高效工具,特别是应用于分析只能在快速扫描中得到的样品结构变化信息。同时我们希望本文能够帮助读者考虑超快扫描量热技术在其他材料研究上的应用,包括合金、药物、生物大分子等。

English

    1. [1]

      胡文兵.高分子结晶学原理.北京:化学工业出版社, 2013.Hu W., Principles of Polymer Crystallization; Chemical Industry Press: Beijing, China, 2013.

    2. [2]

      Wunderlich B., Thermal Analysis of Polymeric Materials; Springer: Berlin, Germany, 2005.

    3. [3]

      Wunderlich B., Prog. in Polym. Sci. 2003, 28(3), 383. doi: 10.1016/S0079-6700(02)00085-0

    4. [4]

      Schick C., Anal. Bioanal. Chem. 2009, 395(6), 1589. doi: 10.1007/s00216-009-3169-y

    5. [5]

      Kamal M. R., Chu E., Polym. Eng. Sci. 1983, 23(1), 27. doi: 10.1002/pen.760230107

    6. [6]

      Toda A., Androsch R., Schick C., Polymer 2016, 91, 239. doi: 10.1016/j.polymer.2016.03.038

    7. [7]

      李照磊, 周东山, 胡文兵.高分子学报, 2016, 9, 1179. doi: 10.11777/j.issn1000-3304.2016.16058Li Z., Zhou D., Hu W., Acta Polym. Sin. 2016, 9, 1179. doi: 10.11777/j.issn1000-3304.2016.16058

    8. [8]

      Di Lorenzo M. L., Androsch R., Rhoades A. M., Righetti M. C., Analysis of Polymer Crystallization by Calorimetry. In Handbook of Thermal Analysis and Calorimetry, Vyazovkin S., Koga N., Schick C., Eds.; Elsevier Science B.V.: Amsterdam, Netherlands, 2018; Vol. 6, p. 253.

    9. [9]

      Gao Y., Zhao B., Vlassak J. J., Schick C., Prog. Mater. Sci. 2019, 104, 53. doi: 10.1016/j.pmatsci.2019.04.001

    10. [10]

      Mathot V. B. F., Polym. Int. 2019, 68(2), 179. doi: 10.1002/pi.5671

    11. [11]

      Santos de Souza F., Gomes Barreto A. P., Macêdo R. O., J. Therm. Anal. Calorim. 2001, 64(2), 739. doi: 10.1023/A:1011548512655

    12. [12]

      Becker R., Döring W., Ann. Phys. 1935, 416(8), 719. doi: 10.1002/andp.19354160806

    13. [13]

      Umemoto S., Kobayashi N., Okui N., J. Macromol. Sci. Phys. 2002, B41(4–6), 923. doi: 10.1081/mb-120013074

    14. [14]

      Denlinger D. W., Abarra E. N., Allen K., Rooney P. W., Messer M. T., Watson S. K., Hellman F., Rev.Sci. Instrum. 1994, 65(4), 946. doi: 10.1063/1.1144925

    15. [15]

      Allen L. H., Ramanath G., Lai S. L., Ma Z., Lee S., Allman D. D. J., Fuchs K. P., Appl. Phys. Lett. 1994, 64(4), 417. doi: 10.1063/1.111116

    16. [16]

      Lai S. L., Ramanath G., Allen L. H., Infante P., Ma Z., Appl. Phys. Lett. 1995, 67(9), 1229. doi: 10.1063/1.115016

    17. [17]

      Lai S. L., Guo J. Y., Petrova V., Ramanath G., Allen L. H., Phys. Rev. Lett. 1996, 77(1), 99. doi: 10.1103/PhysRevLett.77.99

    18. [18]

      Efremov M. Y., Schiettekatte F., Zhang M., Olson E. A., Kwan A. T., Berry R. S., Allen L. H., Phys. Rev. Lett. 2000, 85(17), 3560. doi: 10.1103/PhysRevLett.85.3560

    19. [19]

      Efremov M. Y., Olson E. A., Zhang M., Lai S. L., Schiettekatte F., Zhang Z. S., Allen L. H., Thermochim. Acta 2004, 412(1), 13. doi: 10.1016/j.tca.2003.08.019

    20. [20]

      Efremov M. Y., Olson E. A., Zhang M., Schiettekatte F., Zhang Z., Allen L. H., Rev. Sci. Instrum. 2004, 75(1), 179. doi: 10.1063/1.1633000

    21. [21]

      de la Rama L. P., Hu L., Ye Z., Efremov M. Y., Allen L. H., J. Am. Chem. Soc. 2013, 135(38), 14286. doi: 10.1021/ja4059958

    22. [22]

      Lopeandia A. F., Cerdo L. I., Clavaguera-Mora M. T., Arana L. R., Jensen K. F., Munoz F. J., Rodriguez-Viejo J., Rev. Sci. Instru. 2005, 76(6), 3959. doi: 10.1063/1.1921567

    23. [23]

      Adamovsky S. A., Minakov A. A., Schick C., Thermochim. Acta 2003, 403(1), 55. doi: 10.1016/S0040-6031(03)00182-5

    24. [24]

      Adamovsky S., Schick C., Thermochim. Acta 2004, 415(1), 1. doi: 10.1016/j.tca.2003.07.015

    25. [25]

      Yu J., Tang Z., Zhang F., Wei G., Wang L., Chin. Phy. Lett. 2005, 22(9), 2429. doi: 10.1088/0256-307x/22/9/080

    26. [26]

      Chen M., Du M., Jiang J., Li D., Jiang W., Zhuravlev E., Zhou D., Schick C., Xue G., Thermochim. Acta 2011, 526(1), 58. doi: 10.1016/j.tca.2011.08.020

    27. [27]

      Jiang J., Zhuravlev E., Huang Z., Wei L., Xu Q., Shan M., Xue G., Zhou D., Schick C., Jiang W., Soft Matter 2013, 9(5), 1488. doi: 10.1039/C2SM27012A

    28. [28]

      Wei L., Jiang J., Shan M., Chen W., Deng Y., Xue G., Zhou D., Rev. Sci. Instrum. 2014, 85(7), 074901. doi: 10.1063/1.4889882

    29. [29]

      Jiang J., Wei L., Zhou D., Integration of Fast Scanning Calorimetry(FSC) with Microstructural Analysis Techniques. In Fast Scanning Calorimetry, Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 361.

    30. [30]

      van Herwaardena S., Procedia Eng. 2010, 5, 464. doi: 10.1016/j.proeng.2010.09.147

    31. [31]

      Iervolino E., van Herwaarden A. W., van Herwaarden F. G., van de Kerkhof E., van Grinsven P. P. W., Leenaers A. C. H. I., Mathot V. B. F., Sarro P. M., Thermochim. Acta 2011, 522(1), 53. doi: 10.1016/j.tca.2011.01.023

    32. [32]

      Mathot V., Pyda M., Pijpers T., Vanden Poel G., van de Kerkhof E., van Herwaarden S., van Herwaarden F., Leenaers A., Thermochim. Acta 2011, 522(1), 36. doi: 10.1016/j.tca.2011.02.031

    33. [33]

      van Herwaarden S., Iervolino E., van Herwaarden F., Wijffels T., Leenaers A., Mathot V., Thermochim. Acta 2011, 522(1), 46. doi: 10.1016/j.tca.2011.05.025

    34. [34]

      De Santis F., Adamovsky S., Titomanlio G., Schick C., Macromolecules 2006, 39(7), 2562. doi: 10.1021/ma052525n

    35. [35]

      De Santis F., Adamovsky S., Titomanlio G., Schick C., Macromolecules 2007, 40(25), 9026. doi: 10.1021/ma071491b

    36. [36]

      Kalapat D., Tang Q., Zhang X., Hu W., J. Therm. Anal. Calorim. 2017, 128(3), 1859. doi: 10.1007/s10973-017-6095-9

    37. [37]

      Zhuravlev E., Schmelzer J. W. P., Wunderlich B., Schick C., Polymer 2011, 52(9), 1983. doi: 10.1016/j.polymer.2011.03.013

    38. [38]

      Wang J., Li Z., Perez R. A., Mueller A. J., Zhang B., Grayson S. M., Hu W., Polymer 2015, 63, 34. doi: 10.1016/j.polymer.2015.02.039

    39. [39]

      Androsch R., Schick C., Di Lorenzo M. L., Kinetics of Nucleation and Growth of Crystals of Poly(L-lactic acid). In Advances in Polymer Science, Springer: New York, USA, 2017; Vol. 279, p. 235.

    40. [40]

      Schawe J. E. K., Pogatscher S., Material Characterization by Fast Scanning Calorimetry: Practice and Applications. In Fast Scanning Calorimetry; Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 3.

    41. [41]

      Gaur U., Wunderlich B., Advanced Thermal Analysis System(ATHAS) Polymer Heat Capacity Data Bank. In Computer Applications in Applied Polymer Science, American Chemical Society: New York, USA, 1982; Vol. 197, p. 355.

    42. [42]

      He Y., Luo R., Li Z., Lv R., Zhou D., Lim S., Ren X., Gao H., Hu W., Macromol. Chem. Phys. 2018, 219(3), 1700385. doi: 10.1002/macp.201700385

    43. [43]

      Androsch R., Schick C., Adv. Polym. Sci. 2015, 276, 257. doi: 10.1007/12_2015_325.

    44. [44]

      Jiang X., Reiter G., Hu W., J. Phys. Chem. B 2016, 120(3), 566. doi: 10.1021/acs.jpcb.5b09324

    45. [45]

      Schick C., Androsch R., New Insights into Polymer Crystallization by Fast Scanning Chip Calorimetry. In Fast Scanning Calorimetry, Springer International Publishing: Cham, Switzerland, 2016; pp. 463–535.

    46. [46]

      Androsch R., Schick C., Crystal Nucleation of Polymers at High Supercooling of the Melt. In Advances in Polymer Science, Springer: New York, USA, 2017; Vol. 276, p. 257.

    47. [47]

      Schick C., Androsch R., Schmelzer J. W. P., J. Phys. Condens. Matter 2017, 29(35), 453002. doi: 10.1088/1361-648X/aa7fe0,

    48. [48]

      Pyda M., Nowak-Pyda E., Heeg J., Huth H., Minakov A. A., Di Lorenzo M. L., Schick C., Wunderlich B., J. Polym. Sci. Part B: Polym. Phys. 2006, 44(9), 1364. doi: 10.1002/polb.20789

    49. [49]

      Schawe J. E. K., J. Therm. Anal. Calorim. 2014, 116(3), 1165. doi: 10.1007/s10973-013-3563-8

    50. [50]

      Androsch R., Rhoades A. M., Stolte I., Schick C., Eur. Polym. J. 2015, 66, 180. doi: 10.1016/j.eurpolymj.2015.02.013

    51. [51]

      Van Drongelen M., Meijer-Vissers T., Cavallo D., Portale G., Poel G. V., Androsch R., Thermochim. Acta 2013, 563, 33. doi: 10.1016/j.tca.2013.04.007

    52. [52]

      Rhoades A. M., Williams J. L., Androsch R., Thermochim. Acta 2015, 603, 103. doi: 10.1016/j.tca.2014.10.020

    53. [53]

      Cavallo D., Gardella L., Alfonso G. C., Mileva D., Androsch R., Polymer 2012, 53(20), 4429. doi: 10.1016/j.polymer.2012.08.001

    54. [54]

      Mileva D., Androsch R., Cavallo D., Alfonso G. C., Eur. Polym. J. 2012, 48(6), 1082. doi: 10.1016/j.eurpolymj.2012.03.009

    55. [55]

      Cai J., Luo R., Lv R., He Y., Zhou D., Hu W., Eur. Polym. J. 2017, 96, 79. doi: 10.1016/j.eurpolymj.2017.09.003

    56. [56]

      Chen Y., Chen X., Zhou D., Shen Q., -D.; Hu W., Polymer 2016, 84, 319. doi: 10.1016/j.polymer.2016.01.003

    57. [57]

      Gradys A., Sajkiewicz P., Zhuravlev E., Schick C., Polymer 2016, 82, 40. doi: 10.1016/j.polymer.2015.11.020

    58. [58]

      Chen Y., Shen Q., -D.; Hu W., Polym. Int. 2016, 65(4), 387. doi: 10.1002/pi.5066

    59. [59]

      Wunderlich B., Crystal Nucleation, Growth, Annealing. in Macromolecular Physics. Academic Press: New York, NY, USA, 1976; Vol. 2.

    60. [60]

      Long Y., Shanks R. A., Stachurski Z. H., Prog. Polym. Sci. 1995, 20(4), 651. doi: 10.1016/0079-6700(95)00002-W

    61. [61]

      Tammann G., Z. Phys. Chem. 1898, 25(3), 441.

    62. [62]

      Zhuravlev E., Schmelzer J. W. P., Abyzov A. S., Fokin V. M., Androsch R., Schick C., Cryst. Growth Des. 2015, 15(2), 786. doi: 10.1021/cg501600s

    63. [63]

      Androsch R., Schick C., Rhoades A. M., Macromolecules 2015, 48(22), 8082. doi: 10.1021/acs.macromol.5b01912

    64. [64]

      Okamoto N., Oguni M., Solid State Commun. 1996, 99(1), 53. doi: 10.1016/0038-1098(96)00139-1

    65. [65]

      Wurm A., Zhuravlev E., Eckstein K., Jehnichen D., Pospiech D., Androsch R., Wunderlich B., Schick C., Macromolecules 2012, 45(9), 3816. doi: 10.1021/ma300363b

    66. [66]

      Sánchez M. S., Mathot V. B. F., Poel G. V., Ribelles J. L. G., Macromolecules 2007, 40(22), 7989. doi: 10.1021/ma0712706

    67. [67]

      Androsch R., Zhuravlev E., Schmelzer J. W. P., Schick C., Eur. Polym. J. 2018, 102, 195. doi: 10.1016/j.eurpolymj.2018.03.026

    68. [68]

      Schmelzer J. W. P., Glass: Selected Properties and Crystallization. Walter de Gruyter: Berlin, Germany, 2014; p. 1.

    69. [69]

      Androsch R., Schick C., Schmelzer J. W. P., Eur.Polym. J.2014, 53(1), 100. doi: 10.1016/j.eurpolymj.2014.01.012

    70. [70]

      Stolte I., Androsch R., Di Lorenzo M. L., Schick C., J. Phys. Chem. B 2013, 117(48), 15196. doi: 10.1021/jp4093404

    71. [71]

      Hoffman J. D., Davis G. T., Lauritzen J. I., The Rate of Crystallization of Linear Polymers with Chain Folding. In Treatise on Solid State Chemistry: Volume 3 Crystalline and Noncrystalline Solids, Hannay N. B., Ed.; Springer US: Boston, MA, USA, 1976; p. 497.

    72. [72]

      Donth E., J. Non. Cryst. Solids 1982, 53(3), 325. doi: 10.1016/0022-3093(82)90089-8

    73. [73]

      Donth E., The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials; Springer Science & Business Media: Berlin, Germany, 2013; Vol.48.

    74. [74]

      Chua Y. Z., Zorn R., Holderer O., Schmelzer J. W. P., Schick C., Donth E., J. Chem. Phys. 2017, 146(10), 104501. doi: 10.1063/1.4977737

    75. [75]

      Rhoades A. M., Williams J. L., Wonderling N., Androsch R., Guo J., J. Therm. Anal. Calorim. 2017, 127(1), 939. doi: 10.1007/s10973-016-5793-z

    76. [76]

      Rhoades A. M., Wonderling N., Schick C., Androsch R., Polymer 2016, 106, 29. doi: 10.1016/j.polymer.2016.10.050

    77. [77]

      Baeten D., Cavallo D., Portale G., Androsch R., Mathot V., Goderis B., Combining Fast Scanning Chip Calorimetry with Structural and Morphological Characterization Techniques. In Fast Scanning Calorimetry, Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 327.

    78. [78]

      Mollova A., Androsch R., Mileva D., Schick C., Benhamida A., Macromolecules 2013, 46(3), 828. doi: 10.1021/ma302238r

    79. [79]

      Mileva D., Androsch R., Zhuravlev E., Schick C., Polymer 2012, 53(18), 3994. doi: 10.1016/j.polymer.2012.06.045

    80. [80]

      Lv R., He Y., Wang J., Wang J., Hu J., Zhang J., Hu W., Polymer 2019, 174, 123. doi: 10.1016/j.polymer.2019.04.061

    81. [81]

      Androsch R., Di Lorenzo M. L., Schick, C. Macromol. Chem. Phys. 2017, 219(3), 1700479. doi: 10.1002/macp.201700479

    82. [82]

      Schick C., Androsch R., Polym. Cryst. 2018, 1(4), e10036. doi: 10.1002/pcr2.10036

    83. [83]

      Janssens V., Block C., Van Assche G., Van Mele B., Van Puyvelde P., J. Therm. Anal. Calorim. 2009, 98(3), 675. doi: 10.1007/s10973-009-0518-1

    84. [84]

      Roozemond P. C., van Drongelen M., Verbelen L., Van Puyvelde P., Peters G. W. M., Rheol. Acta 2015, 54(1), 1. doi: 10.1007/s00397-014-0820ol-0

    85. [85]

      Rhoades A. M., Gohn A. M., Seo J., Androsch R., Colby R. H., Macromolecules 2018, 51(8), 2785. doi: 10.1021/acs.macromol.8b00195

    86. [86]

      Cebe P., Hu X., Kaplan D. L., Zhuravlev E., Wurm A., Arbeiter D., Schick C., Sci. Rep. 2013, 3, 1130. doi: 10.1038/srep01130

    87. [87]

      Gao H., Wang J., Schick C., Toda A., Zhou D., Hu W., Polymer 2014, 55(16), 4307. doi: 10.1016/j.polymer.2014.06.048

    88. [88]

      Jiang X., Li Z., Wang J., Gao H., Zhou D., Tang Y., Hu W., Thermochim. Acta 2015, 603, 79. doi: 10.1016/j.tca.2014.04.002

    89. [89]

      Jiang X., Li Z., Gao H., Hu W., Combining Fast-Scan Chip Calorimetry with Molecular Simulations to Investigate Polymer Crystal Melting. In Fast Scanning Calorimetry, Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 379.

  • 加载中
计量
  • PDF下载量:  31
  • 文章访问数:  2260
  • HTML全文浏览量:  719
文章相关
  • 发布日期:  2020-06-15
  • 收稿日期:  2019-05-29
  • 接受日期:  2019-08-02
  • 修回日期:  2019-08-02
  • 网络出版日期:  2019-06-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章