Citation: LI Hui, LIU Shuangyu, WANG Huiming, WANG Bo, SHENG Peng, XU Li, ZHAO Guangyao, BAI Huitao, CHEN Xin, CAO Yuliang, CHEN Zhongxue. Improved Sodium Storage Performance of Na0.44MnO2 Cathode at a High Temperature by Al2O3 Coating[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1357-1364. doi: 10.3866/PKU.WHXB201902021 shu

Improved Sodium Storage Performance of Na0.44MnO2 Cathode at a High Temperature by Al2O3 Coating

  • Corresponding author: CHEN Zhongxue, zxchen_pmc@whu.edu.cn
  • Received Date: 25 February 2019
    Revised Date: 2 April 2019
    Accepted Date: 2 April 2019
    Available Online: 10 December 2019

    Fund Project: the National Natural Science Foundation of China 21673165the National Natural Science Foundation of China 21875171the Science and Technology Project of State Grid SGRIDGKJ[2017]841The project was supported by the Science and Technology Project of State Grid (SGRIDGKJ[2017]841), the National Basic Research Program of China (2016YFB0901500) and the National Natural Science Foundation of China (21875171, 21673165)the National Basic Research Program of China 2016YFB0901500

  • Renewable energy resources (such as wind and solar) are being increasingly utilized to overcome issues of energy shortage and environmental deterioration. However, the intrinsically fluctuant and intermittent character of renewable energy sources hinders their practical application; therefore, batteries have been developed to act as a link between renewable energy sources and consumers. Lithium-ion batteries have become the most advanced battery technology in the last three decades, and have successfully captured the electric vehicles market; however, many concerns have recently arisen about the vastly expanded demand for lithium resources, which contrasts with their limited reserves. In this context, sodium-ion batteries have emerged as a promising alternative because of their intercalation chemistry similar to that of lithium-ion batteries, and the abundance of Na resources in the Earth's crust. Like lithium-ion batteries, the performance and cost of sodium-ion batteries are determined primarily by their cathodes. Among the various cathode materials that have been reported for sodium-ion batteries, Na0.44MnO2 is regarded as one of the most promising because of its opened three-dimensional tunnel structure and good chemical stability; it has also been demonstrated in previous studies to have superior cycling stability at room temperature. In practical terms, commercial batteries are often used at high temperatures (above 40 ℃) in summer. Several Mn-based cathode materials for lithium-ion batteries, such as LiMn2O4 and LiNi0.5Mn1.5O4, exhibit severe capacity decay at high temperatures. Therefore, the evaluation of the Na0.44MnO2 cathode in sodium-ion batteries at high temperatures is critical for its further commercialization. In this study, a Na0.44MnO2 cathode is prepared by a facile solid-state method and its electrochemical performance at a high temperature is measured. The electrochemical tests show that the Na0.44MnO2 cathode has a capacity retention of 66.5% over 100 cycles and a low reversible capacity of 12.3 mAh∙g-1 at 10C (1C = 120 mAh∙g-1). To improve its performance at a high temperature, Al2O3-coated Na0.44MnO2 is prepared via a liquid-phase method, and the coating effect is evaluated by electrochemical measurements as well as morphological, structural, and chemical composition analyses. The results show that the electrochemical performance of uncoated Na0.44MnO2 at 55 ℃ is significantly improved after coating with Al2O3; the capacity retention after 100 cycles increases to 79.2%, and the discharge capacity at 10C is increased to 63.6 mAh∙g-1. The improved performance is clearly attributed to the Al2O3 coating, which effectively prevents direct contact of Na0.44MnO2 with the electrolyte and alleviates the dissolution of manganese at a high temperature, thus maintaining a stable electrode/electrolyte interface and reducing charge transfer resistance.
  • 加载中
    1. [1]

      Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j  doi: 10.1039/c2ee02781j

    2. [2]

      Pan, H.; Hu, Y. S.; Chen, L. Energy Environ. Sci. 2013, 6, 2338. doi: 10.1039/c3ee40847g  doi: 10.1039/c3ee40847g

    3. [3]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.201200691  doi: 10.1002/adfm.201200691

    4. [4]

      Fang, Y.; Chen, Z.; Ai, X.; Yang, H.; Cao, Y. Acta Phys. -Chim. Sin. 2017, 33, 211.  doi: 10.3866/PKU.WHXB201610111

    5. [5]

      Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. Angew. Chem. Int. Ed. 2018, 57, 102. doi: 10.1002/anie.201703772  doi: 10.1002/anie.201703772

    6. [6]

      Delmas, C. Adv. Energy Mater. 2018, 8, 1703137. doi: 10.1002/aenm.201703137  doi: 10.1002/aenm.201703137

    7. [7]

      Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao, Y. Small 2019, 1805427. doi: 10.1002/smll.201805427  doi: 10.1002/smll.201805427

    8. [8]

      Liu, S.; Shao, L.; Zhang, X.; Tao, Z.; Chen, J. Acta Phys. -Chim. Sin. 2018, 34, 581.  doi: 10.3866/PKU.WHXB201711222

    9. [9]

      Fang, Y.; Chen, Z.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Small 2018, 14, 1703116. doi: 10.1002/smll.201703116  doi: 10.1002/smll.201703116

    10. [10]

      Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Adv. Sci. 2017, 4, 1600275. doi: 10.1002/advs.201600275  doi: 10.1002/advs.201600275

    11. [11]

      Li, H.; Bai, Y.; Wu, F.; Ni, Q.; Wu, C. ACS Appl. Mater. Interfaces 2016, 8, 27779. doi: 10.1021/acsami.6b09898  doi: 10.1021/acsami.6b09898

    12. [12]

      Kim, H.; Kim, D. J.; Seo, D. H.; Yeom, M. S.; Kang, K.; Kim, D. K.; Jung, Y. Chem. Mater. 2012, 24, 1205. doi: 10.1021/cm300065y  doi: 10.1021/cm300065y

    13. [13]

      He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan, M. C.; Liu, H.; Gallash, T.; et al. Nano Energy 2016, 27, 602. doi: 10.1016/j.nanoen.2016.07.021  doi: 10.1016/j.nanoen.2016.07.021

    14. [14]

      Zhou, X.; Guduru, R. K.; Mohanty, P. J. Mater. Chem. A 2013, 1, 2757. doi: 10.1039/c3ta01134h  doi: 10.1039/c3ta01134h

    15. [15]

      Ma, G.; Zhao, Y.; Huang, K.; Ju, Z.; Liu, C.; Hou, Y.; Xing, Z. Electrochim. Acta 2016, 222, 36. doi: 10.1016/j.electacta.2016.11.048  doi: 10.1016/j.electacta.2016.11.048

    16. [16]

      Sauvage, F.; Laffont, L.; Tarascon, J. M.; Baudrin, E. lnorg. Chem. 2007, 46, 3289. doi: 10.1021/ic0700250  doi: 10.1021/ic0700250

    17. [17]

      Thackeray, M. M. Prog. Solid State Chem. 1997, 25, 1. doi: 10.1016/S0079-6786(97)81003-5  doi: 10.1016/S0079-6786(97)81003-5

    18. [18]

      Li, X.; Xu, Y.; Wang, C. J. Alloys Compd. 2009, 479, 310. doi: 10.1016/j.jallcom.2008.12.081  doi: 10.1016/j.jallcom.2008.12.081

    19. [19]

      Yamada, A.; Tanaka, M.; Tanaka, K.; Sekai, K. J. Power Sources 1999, 81-82, 73. doi: 10.1016/S0378-7753(99)00106-8  doi: 10.1016/S0378-7753(99)00106-8

    20. [20]

      Capitaine, F.; Gravereau, P.; Delmas, C. Solid State Ion. 1996, 89, 197. doi: 10.1016/0167-2738(96)00369-4  doi: 10.1016/0167-2738(96)00369-4

    21. [21]

      Gummow, R. J.; Thackeray, M. J. Electrochem. Soc. 1994, 141, 1178. doi: 10.1149/1.2054893  doi: 10.1149/1.2054893

    22. [22]

      Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L. V.; Yang, Z.; Liu, J. Adv. Mater. 2011, 23, 3155. doi: 10.1002/adma.201100904  doi: 10.1002/adma.201100904

    23. [23]

      Jiang, X.; Liu, S.; Xu, H.; Chen, L.; Yang, J.; Qian, Y. Chem. Commun. 2015, 51, 8480. doi: 10.1039/c5cc02233a  doi: 10.1039/c5cc02233a

    24. [24]

      Chen, Z.; Yuan, T.; Pu, X.; Yang, H.; Ai, X.; Xia, Y.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10, 11689. doi: 10.1021/acsami.8b00478  doi: 10.1021/acsami.8b00478

    25. [25]

      Yuan, T.; Zhang, J.; Pu, X.; Chen, Z.; Tang, C.; Zhang, X.; Ai, X.; Huang, Y.; Yang, H.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10, 34108. doi: 10.1021/acsami.8b08297  doi: 10.1021/acsami.8b08297

    26. [26]

      Yuan, A.; Tian, L.; Xu, W.; Wang, Y. J. Power Sources 2010, 195, 5032. doi: 10.1016/j.jpowsour.2010.01.074  doi: 10.1016/j.jpowsour.2010.01.074

    27. [27]

      Guan, D.; Jeevarajan, J.A.; Wang, Y. Nanoscale 2011, 3, 1465. doi: 10.1039/c0nr00939c  doi: 10.1039/c0nr00939c

    28. [28]

      Myung, S. T.; Izumi, K.; Komaba, S.; Sun, Y. K.; Yashiro, H.; Kumagai, N. Chem. Mater. 2005, 17, 3695. doi: 10.1021/cm050566s  doi: 10.1021/cm050566s

    29. [29]

      Zhou, X.; Xue, J.; Zhou, D.; Wang, Z.; Bai, Y.; Wu, X.; Liu, X.; Meng, J. ACS Appl. Mater. Interfaces 2010, 2, 2689. doi: 10.1021/am1004738  doi: 10.1021/am1004738

    30. [30]

      Xiong, L.; Xu, Y.; Zhang, C.; Tao, T. Acta Phys. -Chim. Sin. 2012, 28, 1177.  doi: 10.3866/PKU.WHXB201203092

    31. [31]

      Chen, Z.; Qiu, S.; Cao, Y.; Ai, X.; Xie, K.; Hong, X.; Yang, H. J. Mater. Chem. 2012, 22, 17768, doi: 10.1039/c2jm33338d  doi: 10.1039/c2jm33338d

    32. [32]

      Song, J.; Xiao, B.; Lin, Y.; Xu, K.; Li, X. Adv. Energy Mater. 2018, 8, 1703082. doi: 10.1002/aenm.201703082  doi: 10.1002/aenm.201703082

    33. [33]

      Tan, B. J.; Klabunde, K. J.; Sherwood, P. M. A. J. Am. Chem. Soc. 1991, 113, 855. doi: 10.1021/ja00003a019  doi: 10.1021/ja00003a019

    34. [34]

      Liu, X.; Wang, J.; Zhang, J.; Yang, S. J. Mater. Sci.-Mater. El. 2006, 17, 865. doi: 10.1007/s10854-006-0041-0  doi: 10.1007/s10854-006-0041-0

    35. [35]

      Li, J.; Xiong, S.; Liu, Y.; Ju, Z.; Qian, Y. Nano Energy 2013, 2, 1249. doi: 10.1016/j.nanoen.2013.06.003  doi: 10.1016/j.nanoen.2013.06.003

    36. [36]

      Park, J. H.; Park, K.; Kim, R. H.; Yun, D. J.; Park, S. Y.; Han, D.; Lee, S. S.; Park, J. H. J. Mater. Chem. A 2015, 3, 10730. doi: 10.1039/c5ta00609k  doi: 10.1039/c5ta00609k

  • 加载中
    1. [1]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    3. [3]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    4. [4]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    5. [5]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    7. [7]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    8. [8]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    9. [9]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    10. [10]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    13. [13]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    15. [15]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

Metrics
  • PDF Downloads(18)
  • Abstract views(921)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return