Citation: FANG Jiali, CHEN Xin, LI Chang, WU Yulian. Observation of the Gold Nanorods/Graphene Composite Formation and Motion with in situ Liquid Cell Transmission Electron Microscopy[J]. Acta Physico-Chimica Sinica, ;2019, 35(8): 808-815. doi: 10.3866/PKU.WHXB201901035 shu

Observation of the Gold Nanorods/Graphene Composite Formation and Motion with in situ Liquid Cell Transmission Electron Microscopy

  • Corresponding author: CHEN Xin, xinchen73@ecust.edu.cn
  • Received Date: 16 January 2019
    Revised Date: 28 February 2019
    Accepted Date: 1 March 2019
    Available Online: 8 August 2019

    Fund Project: the Shanghai Key Laboratory Project 08DZ2230500The project was supported by the National Natural Science Foundation of China (21875066), the Shanghai Leading Academic Discipline Project, China (B502), and the Shanghai Key Laboratory Project (08DZ2230500)the National Natural Science Foundation of China 21875066the Shanghai Leading Academic Discipline Project, China B502

  • In situ liquid cell transmission electron microscopy (LCTEM) was used to observe the dynamic self-assembly behavior of gold nanorod (AuNR)/graphene (G) composites in real-time. Many important reactions in chemistry, physics, and biology occur in solution and real-time imaging of the reaction objects in a liquid medium can further our understanding of the reaction at the nanoscale. Observations of liquid samples using transmission electron microscopy (TEM) have historically been challenging due to issues with evaporation and difficulty in forming thin liquid layers that are suitable for election beam transmission. In situ LCTEM, as an emerging technology, provides novel opportunities for the real-time and high-resolution observation of dynamic processes in solution. In this communication, we report the use of in situ LCTEM to study the assembly behavior of graphene and AuNRs. By tracking and recording the changes in the positions and shapes of the AuNRs and graphene over time, novel composite formation mechanisms between AuNRs and graphene were observed. The AuNRs tended to approach the graphene edges tip-first due to charge attraction. After the assembled structures were formed, the AuNRs could rotate with the graphene edges, among which the edge-to-edge structure was more stable, without angle changes between the AuNR and graphene edge. Drifting motions of the self-assembled structures were observed. And compared with smaller self-assembled structures, the larger structures seem more effectively resisted pushing by liquid flow. In addition, the motions of the larger structure were more easily slowed due to the drag from the liquid cell window substrate. Graphene folding structures were also observed with LCTEM, suggesting that the folding structure can open and close in the liquid, causing apparent relative position changes between Au and graphene for a fixed AuNR on the graphene layer. Overall, the self-assembled structures are very stable and did not show any disassembly behavior in the liquid. Moreover, the AuNR/graphene composites were used as catalysts and showed improved catalytic performance compared to that of bare AuNRs in 4-nitrophenol reduction experiments. The self-assembled catalyst with a mass composite 1 : 5 AuNRs/G ratio exhibited the best performance with a kapp value of 0.5570 min−1, 8 times that of the bare AuNRs. This significant improvement is closely related to the optimized and stable structure of the AuNR/graphene composites. In situ LCTEM provided a powerful characterization method for analyzing the complex self-assembly behavior of the composites in a liquid and will be useful for the development of high performance composite catalyst materials.
  • 加载中
    1. [1]

      Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Science 2007, 316, 732. doi: 10.1126/science.1140484  doi: 10.1126/science.1140484

    2. [2]

      Chu, M.; Zhang, Y.; Yang, L.; Tan, Y.; Deng, W.; Ma, M.; Su, X.; Xie, Q.; Yao, S. Energy Environ. Sci. 2013, 6, 3600. doi: 10.1039/C3EE41904E  doi: 10.1039/C3EE41904E

    3. [3]

      Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Anal. Chem. 2005, 77, 3261. doi: 10.1021/ac048176x  doi: 10.1021/ac048176x

    4. [4]

      Ozbay, E. Science 2006, 311, 189. doi: 10.1126/science.1114849  doi: 10.1126/science.1114849

    5. [5]

      Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Nat. Mater. 2008, 7, 442. doi: 10.1038/nmat2162  doi: 10.1038/nmat2162

    6. [6]

      Lal, S.; Clare, S. E.; Halas, N. J. Acc. Chem. Res. 2008, 41, 1842. doi: 10.1021/ar800150g  doi: 10.1021/ar800150g

    7. [7]

      Zang, W.; Li, G.; Wang, L.; Zhang, X. Catal. Sci. Technol. 2015, 5, 2532. doi: 10.1039/C4CY01619J  doi: 10.1039/C4CY01619J

    8. [8]

      Song, Y.; Lü, J.; Liu, B.; Lü, C. RSC Adv. 2016, 6, 64937. doi: 10.1039/C6RA11710D  doi: 10.1039/C6RA11710D

    9. [9]

      Yang, Y.; Luo, S.; Guo, S.; Chao, Y.; Yang, H.; Li, Y. Int. J. Hydrog. Energy 2017, 42, 29236. doi: 10.1016/j.ijhydene.2017.10.086  doi: 10.1016/j.ijhydene.2017.10.086

    10. [10]

      Zanolli, Z.; Leghrib, R.; Felten, A.; Pireaux, J.; Llobet, E.; Charlier, J. ACS Nano 2011, 5, 4592. doi: 10.1021/nn200294h  doi: 10.1021/nn200294h

    11. [11]

      Jiang, H.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 1304. doi: 10.1021/ja1099006  doi: 10.1021/ja1099006

    12. [12]

      Gu, X.; Lu, Z.; Jiang, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11822. doi: 10.1021/ja200122f  doi: 10.1021/ja200122f

    13. [13]

      Yang, X.; Chen, D.; Liao, S.; Song, H.; Li, Y.; Fu, Z.; Su, Y. J. Catal. 2012, 291, 36. doi: 10.1016/j.jcat.2012.04.003  doi: 10.1016/j.jcat.2012.04.003

    14. [14]

      Wang, S.; Zhang, M.; Zhang, W. ACS Catal. 2011, 1, 207. doi: 10.1021/cs1000762  doi: 10.1021/cs1000762

    15. [15]

      Xu, Z.; Luo, J.; Chuang, K. T. J. Power Sources 2009, 188, 458. doi: 10.1016/j.jpowsour.2008.12.008  doi: 10.1016/j.jpowsour.2008.12.008

    16. [16]

      Shi, Y.; Wang, J.; Wang, C.; Zhai, T.; Bao, W.; Xu, J.; Xia, X.; Chen, H. J. Am. Chem. Soc. 2015, 137, 7365. doi: 10.1021/jacs.5b01732  doi: 10.1021/jacs.5b01732

    17. [17]

      Chen, X.; Li, C.; Cao, H. Nanoscale 2015, 7, 4811. doi: 10.1039/C4NR07209J  doi: 10.1039/C4NR07209J

    18. [18]

      Zheng, H.; Smith, R. K.; Jun, Y.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Science 2009, 324, 1309. doi: 10.1126/science.1172104  doi: 10.1126/science.1172104

    19. [19]

      Zhou, X. Q.; Zhang, H.; Zhang, Z.; Chen, X.; Jin, C. H. Acta Phys. -Chim. Sin. 2017, 33, 458.  doi: 10.3866/PKU.WHXB201701041
       

    20. [20]

      Liu, Y.; Chen. X; Noh, K. W.; N.; Dillon, S. J. Nanotechnology 2012, 23, 385302. doi: 10.1088/0957-4484/23/38/385302  doi: 10.1088/0957-4484/23/38/385302

    21. [21]

      Jiang, Y.; Zhu, G.; Lin, F.; Zhang, H.; Jin, C.; Yuan, J.; Yang, D.; Zhang, Z. Nano Lett. 2014, 14, 3761. doi: 10.1021/nl500670q  doi: 10.1021/nl500670q

    22. [22]

      Wang, J.; Luo, H.; Liu, Y.; He, Y.; Fan, F.; Zhang, Z.; Mao, S. X.; Wang, C.; Zhu, T. Nano Lett. 2016, 16, 5815. doi: 10.1021/acs.nanolett.6b02581  doi: 10.1021/acs.nanolett.6b02581

    23. [23]

      Nie, A.; Cheng, Y.; Ning, S.; Foroozan, T.; Yasaei, P.; Li, W.; Song, B.; Yuan, Y.; Chen, L.; Salehi-Khojin, A.; et al. Nano Lett. 2016, 16, 2240. doi: 10.1021/acs.nanolett.5b04514  doi: 10.1021/acs.nanolett.5b04514

    24. [24]

      Lin, G.; Zhu, X.; Anand, U.; Liu, Q.; Lu, J.; Aabdin, Z.; Su, H.; Mirsaidov, U. Nano Lett. 2016, 16, 1092. doi: 10.1021/acs.nanolett.5b04323  doi: 10.1021/acs.nanolett.5b04323

    25. [25]

      Sutter, E.; Sutter, P.; Tkachenko, A. V.; Krahne, R.; de Graaf, J.; Arciniegas, M.; Manna, L. Nat. Commun. 2016, 7, 11213. doi: 10.1038/ncomms11213  doi: 10.1038/ncomms11213

    26. [26]

      de Jonge, N.; Peckys, D. B.; Kremers, G. J.; Piston, D. W. Proc. Nat. Acad. Sci. 2009, 106, 2159. doi: 10.1073/pnas.0809567106  doi: 10.1073/pnas.0809567106

    27. [27]

      Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957. doi: 10.1021/cm020732l  doi: 10.1021/cm020732l

    28. [28]

      Li, C.; Chen, X.; Liu, H.; Fang, J.; Zhou, X. Nano Res. 2018, 11, 4697. doi: 10.1007/s12274-018-2052-6  doi: 10.1007/s12274-018-2052-6

    29. [29]

      Zheng, H. Nanoscale 2013, 5, 4070. doi: 10.1039/C3NR00737E  doi: 10.1039/C3NR00737E

    30. [30]

      Praharaj, S.; Nath, S.; Ghosh, S. K.; Kundu, S.; Pal, T. Langmuir 2004, 20, 9889. doi: 10.1021/la0486281  doi: 10.1021/la0486281

    31. [31]

      Chen, X.; Cai, Z.; Chen, X.; Oyama, M. J. Mater. Chem. A 2014, 2, 5668. doi: 10.1039/C3TA15141G  doi: 10.1039/C3TA15141G

    32. [32]

      Huang, J.; Vongehr, S.; Tang, S.; Lu, H.; Meng, X. J. Phys. Chem. C 2010, 114, 15005. doi: 10.1021/jp104675d  doi: 10.1021/jp104675d

    33. [33]

      Wang, Y.; Li, H.; Zhang, J.; Yan, X.; Chen, Z. Phys. Chem. Chem. Phys. 2016, 18, 615. doi: 10.1039/C5CP05336F  doi: 10.1039/C5CP05336F

    34. [34]

      Wang, D.; Duan, H.; Lü, J.; Lü, C. J. Mater. Chem. A 2017, 5, 5088. doi: 10.1039/C6TA09772C  doi: 10.1039/C6TA09772C

    35. [35]

      Li, J.; Liu, C.; Liu, Y. J. Mater. Chem. 2012, 22, 8426. doi: 10.1039/C2JM16386A  doi: 10.1039/C2JM16386A

    36. [36]

      Luo, J.; Zhang, N.; Liu, R.; Liu, X. RSC Adv. 2014, 4, 64816. doi: 10.1039/C4RA11950A  doi: 10.1039/C4RA11950A

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    11. [11]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    16. [16]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    17. [17]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    18. [18]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

Metrics
  • PDF Downloads(11)
  • Abstract views(466)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return