Citation: WANG Zhen, LI En, HE Zhiqi, CHEN Jiean, HUANG Yong. Dehydrogenative Annulation of γ, δ-Unsaturated Amides and Alkynes via Double C―H Activation[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 906-912. doi: 10.3866/PKU.WHXB201811038 shu

Dehydrogenative Annulation of γ, δ-Unsaturated Amides and Alkynes via Double C―H Activation

  • Corresponding author: CHEN Jiean, chenja@pkusz.edu.cn HUANG Yong, huangyong@pkusz.edu.cn
  • Received Date: 27 November 2018
    Revised Date: 12 December 2018
    Accepted Date: 21 December 2018
    Available Online: 21 September 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China 21825101Shenzhen Basic Research Program, China JCYJ20170818085438996The project was supported by the National Natural Science Foundation of China 21572004The project was supported by the National Natural Science Foundation of China 21602007Shenzhen Basic Research Program, China JCYJ20170818085510474The project was supported by the National Natural Science Foundation of China (21825101, 21572004, 21602007), Shenzhen Basic Research Program, China (JCYJ20170818085510474, JCYJ20170818085438996)

  • Pyridones represent an important family of heterocycles that exhibit a wide range of biological activities. They are often found in pharmaceutical agents and biomolecules. Several transition-metal-catalyzed transformations have been developed to access this family of heterocycles. Among them, C―H bond activation has recently emerged as a general strategy for the construction of substituted pyridones. In most cases, the core nitrogen-containing heterocycle is assembled via the dehydrogenative annulation of α, β-unsaturated amides and alkynes. Such processes involve a cascade sequence of N―H cleavage, sp2 C―H activation, and annulation. Despite this progress, the more readily available α, β-saturated amides are rarely used. Ideally, tethering the direct dehydrogenation of an amide with the above-mentioned C―H annulation cascade would give a more practical synthesis of pyridones. Nevertheless, the dehydrogenation of amides under mild conditions is a synthetic challenge due to their intrinsic weak α-acidity. Recently, we have reported a general protocol for the aerobic dehydrogenation of γ, δ-unsaturated amides, acids, and ketones. A key Ir―allyl intermediate was believed responsible for enhancing the α-acidity of the amides studied, which enables the dehydrogenation step to occur under mild reaction conditions. Herein, we describe a new method for the synthesis of polysubstituted pyridones using γ, δ-unsaturated amides and alkynes. In the presence of [RhCp*Cl2]2, the dehydrogenation step occurs via β-C―H bond activation. The resulting π-allyl―Rh intermediate undergoes an accelerated dehydrogenation reaction to afford the doubly unsaturated amide. This in-situ generated dienamide undergoes sp2 C―H activation at the β-position and a subsequent alkyne insertion/cyclization reaction to yield the target heterocycle. Regeneration of the Rh catalyst is accomplished using an external oxidant and completes the streamlined double C―H activation and double dehydrogenation catalytic cycle. Various functional groups are well tolerated. The γ-alkenyl moiety not only facilitates the direct dehydrogenation of amides, but also serves as a handle for further derivatization of the as-obtained products. To gain a mechanistic insight into the reaction cascade, a set of control experiments were carried out. The results demonstrate that the dienamide is one of the key reaction intermediates. NMR experiments confirmed that the fast dehydrogenation process occurs during the early stage of the reaction. The alkyne insertion is believed to be the rate-determining step in the reaction cascade, as suggested by competition experiments.
  • 加载中
    1. [1]

      Kozikowski, A. P.; Tückmantel, W. Acc. Chem. Res. 1999, 32, 641. doi: 10.1021/ar9800892  doi: 10.1021/ar9800892

    2. [2]

      Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1966, 88, 3888. doi: 10.1021/ja00968a057  doi: 10.1021/ja00968a057

    3. [3]

      Mitscher, L. A. Chem. Rev. 2005, 105, 559. doi: 10.1021/cr030101q  doi: 10.1021/cr030101q

    4. [4]

      Jessen, H. J.; Gademann, K. Nat. Prod. Rep. 2010, 27, 1168. doi: 10.1039/B911516C  doi: 10.1039/B911516C

    5. [5]

      Bergman, R. G. Nature 2007, 446, 391. doi: 10.1038/446391a  doi: 10.1038/446391a

    6. [6]

      Ackermann, L. Chem. Rev. 2011, 111, 1315. doi: 10.1021/cr100412j  doi: 10.1021/cr100412j

    7. [7]

      Corey, J. Y. Chem. Rev. 2011, 42, 863. doi: 10.1021/cr900359c  doi: 10.1021/cr900359c

    8. [8]

      Varela, J. A.; Saá, C. Chem. Rev. 2003, 103, 3787. doi: 10.1021/cr030677f  doi: 10.1021/cr030677f

    9. [9]

      Li, B.; Dixneuf, P. H. Chem. Soc. Rev. 2013, 42, 5744. doi: 10.1039/C3CS60020C  doi: 10.1039/C3CS60020C

    10. [10]

      Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. doi: 10.1021/cr900184e  doi: 10.1021/cr900184e

    11. [11]

      Guo, X. -X.; Gu, D. -W.; Wu, Z.; Zhang, W. Chem. Rev. 2015, 115, 1622. doi: 10.1021/cr500410y  doi: 10.1021/cr500410y

    12. [12]

      Su, Y.; Zhao, M.; Han, K.; Song, G.; Li, X. Org. Lett. 2010, 12, 5462. doi: 10.1021/ol102306c  doi: 10.1021/ol102306c

    13. [13]

      Hyster, T. K.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 10565. doi: 10.1021/ja103776u  doi: 10.1021/ja103776u

    14. [14]

      Ackermann, L.; Lygin, A. V.; Hofmann, N. Org. Lett. 2011, 13, 3278. doi: 10.1021/ol201244s  doi: 10.1021/ol201244s

    15. [15]

      Shankar, M.; Guntreddi, T.; Ramesh, E.; Sahoo, A. K. Org. Lett. 2017, 19, 5665. doi: 10.1021/acs.orglett.7b02824  doi: 10.1021/acs.orglett.7b02824

    16. [16]

      Tulichala, R. N. P.; Shankar, M.; Swamy, K. C. K. J. Org. Chem. 2017, 82, 5068. doi: 10.1021/acs.joc.7b00008  doi: 10.1021/acs.joc.7b00008

    17. [17]

      Yu, Y.; Huang, L.; Wu, W.; Jiang, H. Org. Lett. 2014, 16, 2146. doi: 10.1021/ol500611d  doi: 10.1021/ol500611d

    18. [18]

      Matsubara, T.; Ilies, L.; Nakamura, E. Chem. Asian J. 2015, 11, 380. doi: 10.1002/asia.201501095  doi: 10.1002/asia.201501095

    19. [19]

      Chen, Y.; Turlik, A.; Newhouse, T. R. J. Am. Chem. Soc. 2016, 138, 1166. doi: 10.1021/jacs.5b12924  doi: 10.1021/jacs.5b12924

    20. [20]

      Chen, M.; Dong, G. J. Am. Chem. Soc. 2017, 139, 7757. doi: 10.1021/jacs.7b04722  doi: 10.1021/jacs.7b04722

    21. [21]

      Chen, M.; Alexander, J. R.; Dong, G. Angew. Chem. Int. Ed. 2018, 57, 16205. doi: 10.1002/anie.201811197  doi: 10.1002/anie.201811197

    22. [22]

      Wang, Z.; He, Z.; Zhang, L.; Huang, Y. J. Am. Chem. Soc. 2018, 140, 735. doi: 10.1021/jacs.7b11351  doi: 10.1021/jacs.7b11351

    23. [23]

      Hyster, T. K.; Rovis, T. Chem. Sci. 2011, 2, 1606. doi: 10.1039/clsc00235j  doi: 10.1039/clsc00235j

  • 加载中
    1. [1]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    4. [4]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    5. [5]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    8. [8]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    13. [13]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    14. [14]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    15. [15]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    16. [16]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    19. [19]

      Lu-Lu HeLan-Tu XiongXin WangYu-Zhen LiJia-Bao LiYu ShiXin DengZi-Ning Cui . Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria. Chinese Chemical Letters, 2025, 36(4): 110044-. doi: 10.1016/j.cclet.2024.110044

    20. [20]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

Metrics
  • PDF Downloads(13)
  • Abstract views(1319)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return