Citation: WANG Qianqian, LIU Dajun, HE Xingquan. Metal-Organic Framework-Derived Fe-N-C Nanohybrids as Highly-Efficient Oxygen Reduction Catalysts[J]. Acta Physico-Chimica Sinica, ;2019, 35(7): 740-748. doi: 10.3866/PKU.WHXB201809003 shu

Metal-Organic Framework-Derived Fe-N-C Nanohybrids as Highly-Efficient Oxygen Reduction Catalysts

  • Corresponding author: HE Xingquan, hexingquan@hotmail.com
  • Received Date: 3 September 2018
    Revised Date: 29 October 2018
    Accepted Date: 30 October 2018
    Available Online: 8 July 2018

    Fund Project: The project was supported by the Natural Science Foundation of Jilin Province, China (20160101298 JC)the Natural Science Foundation of Jilin Province, China 20160101298 JC

  • Environmentally friendly and renewable energy technologies, such as fuel cells and metal-air batteries, hold great promise for solving current energy and environmental challenges. The oxygen reduction reaction (ORR) plays a pivotal role in this top-drawer question. However, the sluggish kinetics of the ORR and prohibitive costs limit the global scalability of such devices. Traditionally, platinum-based electrocatalysts exhibit the best performance for ORRs in both acid and alkaline electrolytes. However, to significantly reduce the cost and realize sustainable development, utilization of Pt must be replaced or significantly reduced in the ORR cathode for fuel cell applications. Therefore, developing earth-abundant and high-performance non-precious metal catalysts (NPMCs) for ORR is of critical importance for the commercialization of fuel cells. In comparison to traditional catalysts, metal-organic frameworks (MOFs) are ideal precursors that integrate metal, nitrogen, and carbon functionalities together into one ordered 3D crystal structure. MOFs, assembled by secondary building of units comprised of metals and organic linkers with strong bonding, have received significant research attention because they possess permanent porosity, a three-dimensional (3D) structure, and can be prepared using a diversity of metals and organic linkers. High surface area, and microporous carbon materials can be easily obtained by carbonization of MOFs at high temperatures. In particular, MOF-derived carbon nanocomposites, which were prepared from transition metals, and have the form M-N-C (M = Fe or Co), have demonstrated remarkably improved catalytic activity and stability. Herein, we report an NPMC material consisting of Fe3C nanoparticles encapsulated in mesoporous N-doped carbon (Fe-N-C), synthesized by a simple strategy involving physical mixing of MIL-100(Fe) with glucose and urea, and subsequent pyrolysis under inert atmosphere. The strong interaction between metal atoms and nitrogen atoms is beneficial in generating more active sites, and sites with a higher intrinsic catalytic activity, via carbonization. The as-obtained catalysts exhibit remarkable ORR activity in alkaline media, with the best catalyst (Fe-N-C-900, which is synthesized at 900 ℃) featuring a more positive onset potential (0.96 V vs the reversible hydrogen electrode (RHE)), a more positive half-wave potential (0.83 V vs RHE), a much higher diffusion limiting current density (6.28 mA·cm-2) and a larger electron-transfer number (n), even at low overpotentials, compared with other contrast materials. Fe-N-C-900's excellent catalytic activity and stability in ORR are due to its large BET surface area, its large total pore volume, its nitrogen dopants, its active Fe3C nanoparticles and the cooperative effects among its reactive functionalities.
  • 加载中
    1. [1]

      Liu, X.; Liu, W.; Ko, M.; Park, M.; Kim, M. G.; Oh, P.; Chae, S.; Park, S.; Casimir, A.; Wu, G.; Cho, J. Adv. Funct. Mater. 2015, 25, 5799. doi: 10.1002/adfm.201502217  doi: 10.1002/adfm.201502217

    2. [2]

      Qiao, X. C.; Liao, S. J.; Zheng, R. P.; Deng, Y. J.; Song, H. Y.; Du, L. ACS Sustainable Chem. Eng. 2016, 4, 4131. doi: 10.1021/acssuschemeng.6b00451  doi: 10.1021/acssuschemeng.6b00451

    3. [3]

      Li, R.; Wei, Z. D.; Gou, X. L. ACS Catal. 2015, 5, 4133. doi: 10.1021/acscatal.5b00601  doi: 10.1021/acscatal.5b00601

    4. [4]

      Guo, X.; Li, L.; Zhang, X. H.; Chen, J. H. ChemElectroChem.2015, 2, 404. doi: 10.1002/celc.201402342  doi: 10.1002/celc.201402342

    5. [5]

      Li, P. X.; Ma, R. G.; Zhou, Y.; Chen, Y. F.; Liu, Q.; Peng, G. H.; Wang, J. C. RSC Adv. 2016, 6, 70763. doi: 10.1039/c6ra14394f  doi: 10.1039/c6ra14394f

    6. [6]

      He, B. C.; Chen, X. X.; Lu, J. M.; Yao, S. D.; Wei, J.; Zhao, Q.; Jing, D. S.; Huang, X. N.; Wang, T. Electroanalysis2016, 28, 2435. doi: 10.1002/elan.201600258  doi: 10.1002/elan.201600258

    7. [7]

      Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. J. Am. Chem. Soc. 2012, 134, 9082. doi: 10.1021/ja3030565  doi: 10.1021/ja3030565

    8. [8]

      Sa, Y. J.; Park, C.; Jeong, H. Y.; Park, S. H.; Lee, Z.; Kim, K. T.; Park, G. G.; Joo, S. H. Angew. Chem. Int. Ed. 2014, 126, 4186. doi: 10.1002/ange.201307203  doi: 10.1002/ange.201307203

    9. [9]

      Lv, G. J.; Cui, L. L.; Wu, Y. Y.; Liu, Y.; Pu, T.; He, X. Q. Phys. Chem. Chem. Phys. 2013, 15, 13093. doi: 10.1039/c3cp51577j  doi: 10.1039/c3cp51577j

    10. [10]

      Zhang, C.; An, B.; Yang, L.; Wu, B. B.; Shi, W.; Wang, Y. C.; Long, L. S.; Wang, C.; Lin, W. B. J. Mater. Chem. A 2016, 4, 4457. doi: 10.1039/c6ta00768f  doi: 10.1039/c6ta00768f

    11. [11]

      Liu, X. J.; Li, L. G.; Zhou, W. J.; Zhou, Y. C.; Niu, W. H.; Chen, S. W. ChemElectroChem.2015, 2, 803. doi: 10.1002/celc.201500002  doi: 10.1002/celc.201500002

    12. [12]

      Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Adv. Mater. 2013, 25, 4932. doi: 10.1002/adma.201301870  doi: 10.1002/adma.201301870

    13. [13]

      Zhang, J. T.; Qu, L. T.; Shi, G. Q.; Liu, J. Y.; Chen, J. F.; Dai, L. M. Angew. Chem.Int. Ed. 2016, 128, 2270. doi: 10.1002/anie.201510495  doi: 10.1002/anie.201510495

    14. [14]

      Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t  doi: 10.1021/nn103584t

    15. [15]

      Chang, Y. Q.; Hong, F.; He, C. X.; Zhang, Q. L.; Liu, J. H. Adv. Mater. 2013, 25, 4794. doi: 10.1002/adma.201301002  doi: 10.1002/adma.201301002

    16. [16]

      Liang, H. W.; Wei, W.; Wu, Z. S.; Feng, X. L.; Müllen, K. J. Am. Chem. Soc. 2013, 135, 16002. doi: 10.1021/ja407552k  doi: 10.1021/ja407552k

    17. [17]

      Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. J. Am. Chem. Soc. 2016, 138, 3570. doi: 10.1021/jacs.6b00757  doi: 10.1021/jacs.6b00757

    18. [18]

      Li, J. K.; Ghoshal, S.; Liang, W.; Sougrati, M. T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C. R.; Yuan, X. X.; et al. Science 2016, 9, 2418. doi: 10.1039/c6ee01160h  doi: 10.1039/c6ee01160h

    19. [19]

      Li, Z. T.; Sun, H. D.; Wei, L. Q.; Jiang, W. J.; Wu, M. B.; Hu, J. S. ACS Appl. Mater. Interfaces 2017, 9, 5272. doi: 10.1021/acsami.6b15154  doi: 10.1021/acsami.6b15154

    20. [20]

      Lu, H. Y.; Yan, J. J.; Zhang, Y. F.; Huang, Y. P.; Gao, W.; Fan, W.; Liu, T. X. ChemNanoMat.2016, 2, 972. doi: 10.1002/cnma.201600173  doi: 10.1002/cnma.201600173

    21. [21]

      Li, J. S.; Li, S. L.; Tang, Y. J.; Han, M.; Dai, Z. H.; Bao, J. C.; Lan, Y. Q. Chem. Commun. 2015, 51, 2710. doi: 10.1039/c4cc09062d  doi: 10.1039/c4cc09062d

    22. [22]

      Nandan, R.; Nanda, K. K. J. Mater. Chem. A 2017, 5, 16843. doi: 10.1039/c7ta04597b  doi: 10.1039/c7ta04597b

    23. [23]

      Ren, G. Y.; Lu, X. Y.; Li, Y. N.; Zhu, Y.; Dai, L. M.; Jiang, L. ACS Appl. Mater. Interfaces 2016, 8, 4118. doi: 10.1021/acsami.5b11786  doi: 10.1021/acsami.5b11786

    24. [24]

      Aijaz, A.; Masa, J.; R sler, C.; Antoni, H.; Fischer, R. A.; Schuhmann, W.; Muhler, M. Chem. Eur. J. 2017, 23, 12125. doi: 10.1002/chem.201701389  doi: 10.1002/chem.201701389

    25. [25]

      Yang, W. X.; Liu, X. J.; Yue, X. Y.; Jia, J. B.; Guo, S. J. J. Am. Chem. Soc. 2015, 137, 1436. doi: 10.1021/ja5129132  doi: 10.1021/ja5129132

    26. [26]

      Liu, Y. L.; Xu, X. Y.; Sun, P. C.; Chen, T. H. Int. J. Hydrogen Energy 2015, 40, 4531. doi: 10.1016/j.ijhydene.2015.02.018  doi: 10.1016/j.ijhydene.2015.02.018

    27. [27]

      Wang, Z. L.; Xiao, S.; Zhu, Z. L.; Long, X.; Zheng, X. L.; Lu, X. H.; Yang, S. H. ACS Appl. Mater. Interfaces 2015, 7, 4048. doi: 10.1021/am507744y  doi: 10.1021/am507744y

    28. [28]

      Yang, J.; Wang, X.; Li, B.; Ma, L.; Shi, L.; Xiong, Y. J.; Xu, H. X. Adv. Funct. Mater. 2017, 27, 1606497. doi: 10.1002/adfm.201606497  doi: 10.1002/adfm.201606497

    29. [29]

      Peera, S. G.; Arunchander, A.; Sahu, A. K. Nanoscale 2016, 8, 14650. doi: 10.1039/c6nr02263d  doi: 10.1039/c6nr02263d

    30. [30]

      Tian, W. J.; Zhang, H. Y.; Sun, H. Q.; Suvorva, A.; Saunders, M.; Tade, M.; Wang, S. B. Adv. Funct. Mater.2016, 26, 8651. doi: 10.1002/adfm.201603937  doi: 10.1002/adfm.201603937

    31. [31]

      Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J. P. Nat. Commun. 2011, 2, 416. doi: 10.1038/ncomms1427  doi: 10.1038/ncomms1427

    32. [32]

      Ahn, S. H.; Manthiram, A. Small 2017, 13, 1603437. doi: 10.1002/smll.201603437  doi: 10.1002/smll.201603437

    33. [33]

      Wang, X. J.; Zhang, H. G.; Lin, H. H.; Gupta, S.; Wang, C.; Tao, Z. X.; Fu, H.; Wang, T.; Zheng, J.; Wu, G.; et al. Nano Energy 2016, 25, 110. doi: 10.1016/j.nanoen.2016.04.042  doi: 10.1016/j.nanoen.2016.04.042

    34. [34]

      Lai, Q. X.; Su, Q.; Gao, Q. W.; Liang, Y. Y.; Wang, Y. X.; Yang, Z.; Zhang, X. G.; He, J. P.; Tong, H. ACS Appl. Mater. Interfaces 2015, 7, 18170. doi: 10.1021/acsami.5b05834  doi: 10.1021/acsami.5b05834

    35. [35]

      Niu, W. H.; Li, L. G.; Liu, X. J.; Wang, N.; Liu, J.; Zhou, W. J.; Tang, Z. H.; Chen, S. W. J. Am. Chem. Soc. 2015, 137, 5555. doi: 10.1021/jacs.5b02027  doi: 10.1021/jacs.5b02027

    36. [36]

      Xiao, M. L.; Zhu, J. B.; Feng, L. G.; Liu, C. P.; Xing, W. Adv. Mater. 2015, 27, 2521. doi: 10.1002/adma.201500262  doi: 10.1002/adma.201500262

    37. [37]

      Hu, Y.; Jensen, J. O.; Zhang, W.; Cleemann, L. N.; Xing, W.; Bjerrum, N. J.; Li, Q. F. Angew. Chem. Int. Ed. 2014, 126, 3749. doi: 10.1002/ange.201400358  doi: 10.1002/ange.201400358

    38. [38]

      Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. Nat. Energy 2016, 1, 15006. doi: 10.1038/NENERGY.2015.6  doi: 10.1038/NENERGY.2015.6

    39. [39]

      Ye, L.; Chai, G. L.; Wen, Z. H. Adv. Funct. Mater. 2017, 27, 1606190. doi: 10.1002/adfm.201606190  doi: 10.1002/adfm.201606190

    40. [40]

      Xu, Y.; Tu, W. G.; Zhang, B. W.; Yin, S. M.; Huang, Y. Z.; Kraft, M.; Xu, R. Adv. Mater. 2017, 29, 1605957. doi: 10.1002/adma.201605957  doi: 10.1002/adma.201605957

    41. [41]

      Gu, W. L.; Hu, L. Y.; Li, J.; Wang, E. K. ACS Appl. Mater. Interfaces 2016, 8, 35281. doi: 10.1021/acsami.6b12031  doi: 10.1021/acsami.6b12031

    42. [42]

      Deng, Y. J.; Dong, Y. Y.; Wang, G. H.; Sun, K. L.; Shi, X. D.; Zheng, L.; Li, X. H.; Liao, S. J. ACS Appl. Mater. Interfaces 2017, 9, 9699. doi: 10.1021/acsami.6b16851  doi: 10.1021/acsami.6b16851

    43. [43]

      You, B.; Jiang, N.; Sheng, M. L.; Drisdell, W. S.; Yano, J.; Sun, Y. J. ACS Catal.2015, 5, 7068. doi: 10.1021/acscatal.5b02325  doi: 10.1021/acscatal.5b02325

    44. [44]

      Wang, D. K.; Wang, M. T.; Li, Z. H. ACS Catal. 2015, 5, 6852. doi: 10.1021/acscatal.5b01949  doi: 10.1021/acscatal.5b01949

    45. [45]

      Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Energy Environ. Sci. 2016, 9, 1320. doi: 10.1039/c6ee00054a  doi: 10.1039/c6ee00054a

    46. [46]

      Zhu, Q. L.; Xia, W.; Akita, T.; Zou, R. Q.; Xu, Q. Adv. Mater. 2016, 28, 6391. doi: 10.1002/adma.201600979  doi: 10.1002/adma.201600979

    47. [47]

      Zhu, J. B.; Xiao, M. L.; Zhang, Y. L.; Jin, Z.; Peng, Z. Q.; Liu, C. P.; Chen, S. L.; Ge, J. J.; Xing, W. ACS Catal. 2016, 6, 6335. doi: 10.1021/acscatal.6b01503  doi: 10.1021/acscatal.6b01503

    48. [48]

      Hao, Y. C.; Lu, Z. Y.; Zhang, G. X.; Chang, Z.; Luo, L.; Sun, X. M. Energy Technology. 2017, 5, 1265. doi: 10.1002/ente.201600559  doi: 10.1002/ente.201600559

    49. [49]

      Yang, Z. K.; Lin, L.; Xu, A. W. Small 2016, 12, 5710. doi: 10.1002/smll.201601887  doi: 10.1002/smll.201601887

    50. [50]

      Niu, W. H.; Li, L. G.; Liu, J; Wang, N.; Li, W.; Tang, Z. H.; Zhou, W. J.; Chen, S. W. Small 2016, 12, 1900. doi: 10.1002/smll.201503542  doi: 10.1002/smll.201503542

    51. [51]

      Shi, W.; Wang, Y. C.; Chen, C.; Yang, X. D.; Zhou, Z. Y.; Sun, S. G. Chin. J. Catal. 2016, 37, 1103. doi: 10.1016/S1872-2067(16)62471-3  doi: 10.1016/S1872-2067(16)62471-3

    52. [52]

      Zhang, Y. Q.; Zhang, X. L.; Ma, X. X.; Guo, W. H.; Wang, C. C.; Asefa, T.; He, X. Q. Sci. Report 2017, 7, 43366. doi: 10.1038/srep43366  doi: 10.1038/srep43366

    53. [53]

      Yang, Y.; Zhao, L.; Hu, X. L.; Guan, Y.; Xue, J. H.; Zhu, Z.; Cui, L. L. Chem. Select. 2017, 2, 4176. doi: 10.1002/slct.201700538  doi: 10.1002/slct.201700538

    54. [54]

      Wang, Y.; Chen, X. T.; Lin, Q. P.; Kong, A. G.; Zhai, Q. G.; Xie, S. L.; Feng, P. Y. Nanoscale. 2017, 9, 862. doi: 10.1039/c6nr07268b  doi: 10.1039/c6nr07268b

    55. [55]

      Jiang, H.; Liu, Y. S.; Hao, J. Y.; Wang, Y. Q.; Li, W. Z.; Li, J. ACS Sustainable Chem. Eng. 2017, 5, 5341. doi: 10.1021/acssuschemeng.7b00655  doi: 10.1021/acssuschemeng.7b00655

    56. [56]

      Zhao, Y.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. J. Phys. Chem. C 2015, 119, 2583. doi: 10.1021/jp511515q  doi: 10.1021/jp511515q

    57. [57]

      Yuan, Y.; Yang, L.; He, B.; Pervaiz, E.; Shao, Z.; Yang, M. Nanoscale 2017, 9, 6259. doi: 10.1039/c7nr02264f  doi: 10.1039/c7nr02264f

    58. [58]

      Song, L.; Wang, T.; Ma, Y. O.; Xue, H. R.; Guo, H.; Fan, X. L.; Xia, W.; Gong, H.; He, J. P. Chem. Eur. J. 2017, 23, 3398. doi: 10.1002/chem.201605026  doi: 10.1002/chem.201605026

  • 加载中
    1. [1]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    3. [3]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    4. [4]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    5. [5]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    6. [6]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    7. [7]

      Sumiya Akter Dristy Md Ahasan Habib Shusen Lin Mehedi Hasan Joni Rutuja Mandavkar Young-Uk Chung Md Najibullah Jihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-. doi: 10.1016/j.actphy.2025.100079

    8. [8]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    9. [9]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    10. [10]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    11. [11]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    12. [12]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    13. [13]

      Xiaoya CuiYanchang LiuQiang LiHe ZhuShibo XiJianrong Zeng . Ultrafast crystallinity engineering of PtCo3 alloy for enhanced oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(5): 110069-. doi: 10.1016/j.cclet.2024.110069

    14. [14]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    15. [15]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    16. [16]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    17. [17]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    18. [18]

      Xuyun LuYanan ChangShasha WangXiaoxuan LiJianchun BaoYing Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277

    19. [19]

      Xi Feng Ding-Yi Hu Zi-Jun Liang Mu-Yang Zhou Zhi-Shuo Wang Wen-Yu Su Rui-Biao Lin Dong-Dong Zhou Jie-Peng Zhang . A metal azolate framework with small aperture for highly efficient ternary benzene/cyclohexene/cyclohexane separation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100540-100540. doi: 10.1016/j.cjsc.2025.100540

    20. [20]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

Metrics
  • PDF Downloads(22)
  • Abstract views(1089)
  • HTML views(348)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return