Citation: CHENG Xiaomeng, JIAO Dongxia, LIANG Zhihao, WEI Jinjin, LI Hongping, YANG Junjiao. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Physico-Chimica Sinica, ;2018, 34(8): 945-951. doi: 10.3866/PKU.WHXB201801292 shu

Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids

  • Corresponding author: LI Hongping, lihongping@zzu.edu.cn YANG Junjiao, yangjj@mail.buct.edu.cn
  • Received Date: 3 January 2018
    Revised Date: 20 January 2018
    Accepted Date: 25 January 2018
    Available Online: 29 August 2018

    Fund Project: This work was supported by the National Natural Science Foundation of China J1210060the Innovative Research Grant for Undergraduate Students of National/Zhengzhou University 201710459008This work was supported by the National Natural Science Foundation of China 21773215This work was supported by the National Natural Science Foundation of China (21773215, J1210060) and the Innovative Research Grant for Undergraduate Students of National/Zhengzhou University (201710459008)

  • The self-assembly behavior of block copolymers and their assembled micellar morphologies have attracted considerable attention because of their potential applications in biomedicine, drug delivery, and catalysis. Herein we report that CO2-expanded liquids (CXLs) facilitate the morphology control of the self-assembled aggregates (SAAs) of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) formed in CO2-expanded toluene. It is found that the anti-solvent effect of CXLs can successfully regulate the self-assembly behavior of the copolymer PS-b-P4VP. The difference in amphiphilicity between PS and P4VP block is reduced with increasing pressure of CO2-expanded toluene owing to the anti-solvent effect of CO2. In addition, this diminished difference may influence the interfacial tension at the P4VP core-PS corona interface, which triggers a morphological change of the aggregate. The SAA structures are dependent on both CXL pressure and copolymer composition under the experimental conditions implemented in this work. The morphological evolution of the SAAs in CXLs exhibits remarkable pressure dependence. As the pressure increases, the SAA structure of PS168-b-P4VP420 transits from primarily spheres (0.1 MPa) to mostly interconnected rods (6.35 MPa), the SAA of PS790-b-P4VP263 evolves from small vesicles (0.1 MPa) to large compound vesicles (LCVs, 6.35 MPa), whereas the PS153-b-P4VP1530 counterpart switches from large compound micelles (LCMs, 0.1 MPa) to mainly large compound vesicles (LCVs, 6.35 MPa). Moreover, transmission electron microscopy (TEM) data on constant copolymer composition implies that the packing parameter p of the SAAs increases with the CXLs pressure. Especially, under the experimental conditions employed in this work, we find that the major factor controlling the SAA shape in conventional toluene is the copolymer composition, while in CO2-expanded toluene, the dominant factor controlling the SAA morphology might be the varying contact area between shell-forming segment PS and the CXLs with increasing pressure. This work proves that the CXL method facilitates the modulation of morphology of the SAAs, and opens a green route for the development of new nano-functional materials.
  • 加载中
    1. [1]

      Mai, Y.; Eisenberg, A. Chem. Soc. Rev.2012, 41, 5969. doi: 10.1039/c2cs35115c  doi: 10.1039/c2cs35115c

    2. [2]

      Chen, S. C.; Kuo, S. W.; Chang, F. C. Langmuir2011, 27, 10197. doi: 10.1021/la201506y  doi: 10.1021/la201506y

    3. [3]

      Zhang, L.; Eisenberg, A. J. Am. Chem. Soc. 1996, 118, 3168. doi: 10.1021/ja953709s  doi: 10.1021/ja953709s

    4. [4]

      Mizuno, H.; Buriak, J. M. J. Am. Chem. Soc. 2008, 130, 17656. doi: 10.1021/ja807708r  doi: 10.1021/ja807708r

    5. [5]

      Hanson, J. A.; Chang, C. B.; Graves, S. M.; Li, Z. B.; Mason, T. G.; Deming, T. J. Nature 2008, 455, 85. doi: 10.1038/nature07197  doi: 10.1038/nature07197

    6. [6]

      Mai, Y.; Eisenberg, A. J. Am. Chem. Soc.2010, 132, 10078. doi: 10.1021/ja1024063  doi: 10.1021/ja1024063

    7. [7]

      Wu, J.; Eisenberg, A. J. Am. Chem. Soc.2006, 128, 2880. doi: 10.1021/ja056064x  doi: 10.1021/ja056064x

    8. [8]

      Sidorenko, A.; Tokarev, I.; Minko, S.; Stamm, M. J. Am. Chem. Soc. 2003, 125, 12211. doi: 10.1021/ja036085w  doi: 10.1021/ja036085w

    9. [9]

      Yao, X.; Chen, D.; Jiang, M. Macromolecules2004, 37, 4211. doi: 10.1021/ma0497308  doi: 10.1021/ma0497308

    10. [10]

      Peng, H.; Chen, D.; Jiang, M. Langmuir 2003, 19, 10989. doi: 10.1021/la0348721  doi: 10.1021/la0348721

    11. [11]

      Ali, N.; Park, S. Y. Langmuir2009, 25, 13426. doi: 10.1021/la902346u  doi: 10.1021/la902346u

    12. [12]

      Clodt, J. I.; Rangou, S.; Schroder, A.; Buhr, K.; Hahn, J.; Jung, A.; Filiz, V.; Abetz, V. Macromol. Rapid Commun. 2013, 34, 190. doi: 10.1002/marc.201200680  doi: 10.1002/marc.201200680

    13. [13]

      Hameed, N.; Salim, N. V.; Parameswaranpillai, J.; Fox, B. L. Mater. Lett. 2015, 147, 92. doi: 10.1016/j.matlet.2015.02.036  doi: 10.1016/j.matlet.2015.02.036

    14. [14]

      Liu, H.; Gao, C. Q.; Ding, Z. L.; Zhang, W. Q. Macromol. Chem. Phys.2016, 217, 467. doi: 10.1002/macp.201500273  doi: 10.1002/macp.201500273

    15. [15]

      Liu, F.; Eisenberg, A. J. Am. Chem. Soc.2003, 125, 15059. doi: 10.1021/ja038142r  doi: 10.1021/ja038142r

    16. [16]

      Geng, Z.; Cheng, Z. K.; Zhu, Y. T.; Jiang, W. J. Phys. Chem. B 2016, 120, 5527. doi: 10.1021/acs.jpcb.6b00273  doi: 10.1021/acs.jpcb.6b00273

    17. [17]

      Yi, Z.; Zhang, P. B.; Liu, C. J.; Zhu, L. P. Macromolecules 2016, 49, 3343. doi: 10.1021/acs.macromol.6b00166  doi: 10.1021/acs.macromol.6b00166

    18. [18]

      Zhang, L.; Shen, H.; Eisenberg, A. Macromolecules 1997, 30, 1001. doi: 10.1021/ma961413g  doi: 10.1021/ma961413g

    19. [19]

      Harada, A.; Kataoka, K. Macromolecules1995, 28, 5294. doi: 10.1021/ma946318r  doi: 10.1021/ma946318r

    20. [20]

      Duan, H.; Chen, D.; Jiang, M.; Gan, W.; Li, S.; Wang, M.; Gong, J. J. Am. Chem. Soc. 2001, 123, 12097. doi: 10.1021/ja011502v  doi: 10.1021/ja011502v

    21. [21]

      Zhu, J.; Yu, H.; Jiang, W. Macromolecules 2005, 38, 7492. doi: 10.1021/ma0510744  doi: 10.1021/ma0510744

    22. [22]

      Anand, M., You, S.; Hurst K. M.; Saunders, S. R.; Kitchens, C. L.; Ashurst, W. R.; Roberts, C. B. Ind. Eng. Chem. Res. 2008, 47, 553. doi: 10.1021/ie070981p  doi: 10.1021/ie070981p

    23. [23]

      Dehghani, F.; Foster, N. R. Cur. Opin. Solid State Mater. Sci. 2003, 7, 363. doi: 10.1016/j.cossms.2003.11.001  doi: 10.1016/j.cossms.2003.11.001

    24. [24]

      Cheng, X.; Huang, S.; Li, H.; An, N.; Wang, Q.; Li, Y. RSC Adv. 2016, 6, 4545. doi: 10.1039/c5ra25725e  doi: 10.1039/c5ra25725e

    25. [25]

      Liu, Y.; Wei, Y.; Qin, R.; Zhang, L.; Yang, L.; Li, H.; Li, X. eXPRESS Polym. Lett. 2011, 5, 60. doi: 10.3144/expresspolymlett.2011.7  doi: 10.3144/expresspolymlett.2011.7

    26. [26]

      Su, M.; Wei, Y.; Qi, L.; Pang, Y.; Guo, Y.; Li, P.; Li, J.; Li, H. eXPRESS Polym. Lett. 2011, 5, 1102. doi: 10.3144/expresspolymlett.2011.107  doi: 10.3144/expresspolymlett.2011.107

    27. [27]

      Xue, W.; Qi, L.; Li, X.; Huang, S.; Li, H.; Guan, X.; Bai, G.; Liu, L. E. Chem. Eng. J. 2012, 209, 118. doi: 10.1016/j.cej.2012.08.022  doi: 10.1016/j.cej.2012.08.022

    28. [28]

      Cheng, X.; Zheng, X.; Zhang, Y.; Li, Y.; Li, H.; Cao, R.; Li, Q. RSC Adv. 2016, 6, 77796. doi: 10.1039/c6ra15855b  doi: 10.1039/c6ra15855b

    29. [29]

      Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; et al. Macromolecules 1998, 31, 5559. doi: 10.1021/ma9804951  doi: 10.1021/ma9804951

    30. [30]

      Antonietti, M.; Foster, S. Adv. Mater. 2003, 15, 1323. doi: 10.1002/adma.200300010  doi: 10.1002/adma.200300010

    31. [31]

      Izzo, D.; Marques, C. M.Macromolecules 1997, 30, 6544. doi: 10.1021/ma970264e  doi: 10.1021/ma970264e

  • 加载中
    1. [1]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    2. [2]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    3. [3]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    4. [4]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    5. [5]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    6. [6]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    7. [7]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    8. [8]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    9. [9]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    10. [10]

      Fengying YeMing HuJun LuoWei YuZhirong XuJinjin FuYansong Zheng . Significantly boosting circularly polarized luminescence by synergy of helical and planar chirality. Chinese Chemical Letters, 2025, 36(5): 110724-. doi: 10.1016/j.cclet.2024.110724

    11. [11]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    12. [12]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    15. [15]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    16. [16]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    17. [17]

      Changlin SuWensheng CaiXueguang Shao . Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chinese Chemical Letters, 2025, 36(4): 110095-. doi: 10.1016/j.cclet.2024.110095

    18. [18]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

Metrics
  • PDF Downloads(6)
  • Abstract views(256)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return