Citation: WU Hao, YAN Zhong. Antimonene Quantum Dots: Large-scale Synthesis via Liquid-phase Exfoliation[J]. Acta Physico-Chimica Sinica, ;2019, 35(10): 1052-1057. doi: 10.3866/PKU.WHXB201801262 shu

Antimonene Quantum Dots: Large-scale Synthesis via Liquid-phase Exfoliation

  • Corresponding author: YAN Zhong, zhongyan@njust.edu.cn
  • Received Date: 27 December 2017
    Revised Date: 23 January 2018
    Accepted Date: 23 January 2019
    Available Online: 26 October 2018

    Fund Project: the Natural Science Foundation of Jiangsu Province, China 20150761the China Postdoctoral Science Foundation 2015M580429The project was supported by the National Natural Science Foundation of China (51502140), the Natural Science Foundation of Jiangsu Province, China (20150761), the China Postdoctoral Science Foundation (2015M580429) and the Jiangsu Postdoctoral Science Foundation, China (1501013A)The project was supported by the National Natural Science Foundation of China 51502140the Jiangsu Postdoctoral Science Foundation, China 1501013A

  • Since the rediscovery of black phosphorus as a fascinating two-dimensional material, other two-dimensional materials comprising group VA elements have attracted tremendous interest, such as antimonene. Since 2015, besides intensive research efforts on the atomic structures, electronic properties and synthesis methods of antimonene, scientists have conducted applied researches on semiconductor and nonlinear optical devices, molecular adsorption and thermoelectric applications based on antimonene. In addition, antimonene quantum dots (SbQDs) as derivatives of antimonene, have also been studied recently, and their potential applications in photothermal therapy have been reported. To further explore the unique properties and potential applicationsof SbQDs, it is important tosynthesize large amounts of high-quality SbQDs. In this work, antimonene samples were prepared by sonication-assisted liquid exfoliation method. Antimony powders (200 mg) were dispersed in 200 mL water, C2H5OH and 1-methyl-2-pyrrolidone (NMP) solvents separately and sonicated for 10 h at a power of 180 W. Thereafter, the suspensions were centrifuged at 6000 r∙min-1 for 20 min, and the supernatant containing antimonene samples were decanted and characterized. The dispersion concentration of antimonene samples in the three solvents (water, C2H5OH and NMP) were measured as 0.57, 1.04, and 4.27 µg∙mL-1, respectively. However, the antimonene concentrations in water, C2H5OH and NMP dropped by 73.7%, 30.8% and 10.5%, respectively, after standing for 96 h. Thus, antimonene dispersed in NMP demonstrated the highest concentration and best stability, which indicates that NMP is more suitable for antimonene exfoliation. Furthermore, transmission electron microscopy (TEM) studies revealed that only the samples prepared in NMP were morphologically quantum dots, while antimonene samples obtained in the other two solvents were mainly nanosheets. The obtained SbQDs in NMP had a lateral size of approximately 3.0 nm. High-resolution transmission electron microscope (HRTEM) also confirmed the good crystal quality of theobtained SbQDs. In addition, we measured the turbidities of antimonene dispersed in those three solvents at various concentrations. As theoretically predicted, the turbidity of antimonne dispersions linearly depends on the concentraion; thus, the antimonene concentrations can be calculated by measuring the turbidity through an optical method. Thus, this study provides a high-throughput, nondestructive method for determining antimonene dispersion concentration, which will faciliate further research in this area.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.;Dubonos, S. V.; Grigorieva, I. V.; Firsov, A.A.Science 2004, 306 (5696), 666.doi:10.1126/science.1102896  doi: 10.1126/science.1102896

    2. [2]

      Hu, Y. J.; Jin, J.;Zhang, H.;Wu, P.;Cai, C.X.Acta Phys.-Chim. Sin. 2010, 26 (8), 2073.  doi: 10.3866/PKU.WHXB20100812

    3. [3]

      Radisavljevic, B.;Radenovic, A.;Brivio, J.;Giacometti, V.;Kis, A.Nat. Nanotech. 2011, 6 (3), 147.doi:10.1038/nnano.2010.279  doi: 10.1038/nnano.2010.279

    4. [4]

      Li, L.;Yu, Y.;Ye, G.;Ge, Q.;Ou, X.;Wu, H.;Feng, D.;Chen, X.;Zhang, Y.Nat. Nanotech. 2014, 9 (5), 372. doi:10.1038/nnano.2014.35  doi: 10.1038/nnano.2014.35

    5. [5]

      Shi, G.;Michelmore, A.;Jin, J.;Li, L. H.; Chen, Y.;Wang, L.;Yu, H.;Wallace, G.;Gambhir, S.;Zhu, S.J. Mater. Chem. A 2014, 2 (47), 20382.doi:10.1039/C4TA04367G  doi: 10.1039/C4TA04367G

    6. [6]

      Zhang, S.;Yan, Z.;Li, Y.;Chen, Z.;Zeng, H.Angew. Chem. Int. Edit. 2015, 54 (10), 3112.doi:10.1002/ange.201411246  doi: 10.1002/ange.201411246

    7. [7]

      Lei, T.;Liu, C.;Zhao, J. L.; Li, J. M.; Li, Y. P.; Wang, J. O.; Wu, R.;Qian, H. J.; Wang, H. Q.; Ibrahim, K.J. Appl. Phys. 2016, 119 (1), 1757.doi:10.1063/1.4939281  doi: 10.1063/1.4939281

    8. [8]

      Gibaja, C.;Rodriguez-San-Miguel, D.;Ares, P.;Gã3Mez-Herrero, J.;Varela, M.;Gillen, R.;Maultzsch, J.;Hauke, F.;Hirsch, A.;Abell ,N.G.Angew. Chem. Int. Edit. 2016, 55 (46), 14345. doi:10.1002/anie.201605298  doi: 10.1002/anie.201605298

    9. [9]

      Pizzi, G.;Gibertini, M.;Dib, E.;Marzari, N.;Iannaccone, G.;Fiori, G.Nat. Commun. 2016, 7 (12585), 1.doi:10.1038/ncomms12585  doi: 10.1038/ncomms12585

    10. [10]

      Mandracci, P.;Mussano, F.;Rivolo, P.;Carossa, S.Coatings 2016, 6 (1), 7.doi:10.3390/coatings6010007  doi: 10.3390/coatings6010007

    11. [11]

      Lu, L.;Tang, X.;Cao, R.;Wu, L.;Li, Z.;Jing, G.;Dong, B.;Lu, S.;Li, Y.;Xiang, Y.Adv. Opt. Mater. 2017, 5 (17), 1700301. doi:10.1002/adom.201700301  doi: 10.1002/adom.201700301

    12. [12]

      Lei, G. P.; Liu, C.;Xie, H.Acta Phys.-Chim. Sin. 2015, 31 (4), 660.  doi: 10.3866/PKU.WHXB201501291

    13. [13]

      Tao, W.;Ji, X.;Xu, X.;Islam, M. A.; Li, Z.;Chen, S.;Saw, P. E.; Zhang, H.;Bharwani, Z.;Guo, Z.Angew. Chem. Int. Edit. 2017, 56(39), 11896.doi:10.1002/anie.201703657  doi: 10.1002/anie.201703657

    14. [14]

      Coleman, J.N.Acc. Chem. Res. 2013, 46 (1), 14. doi:10.1021/ar300009f  doi: 10.1021/ar300009f

    15. [15]

      Paton, K. R.; Varrla, E.;Backes, C.;Smith, R. J.; Khan, U.;O'Neill, A.;Boland, C.;Lotya, M.;Istrate, O. M.; King, P.Nat. Mater.2014, 13 (6), 624.doi:10.1038/nmat3944  doi: 10.1038/nmat3944

    16. [16]

      Coleman, J. N.; Lotya, M.;O'Neill, A.;Bergin, S. D.; King, P. J.; Khan, U.;Young, K.;Gaucher, A.;De, S.;Smith, R.J.Science 2011, 42 (18), 568.doi:10.1126/science.1194975  doi: 10.1126/science.1194975

    17. [17]

      Irache, J. M.; Durrer, C.;Duchêne, D.;Ponchel, G.Biomaterials 1994, 15 (11), 899.doi:10.1016/0142-9612(94)90114-7  doi: 10.1016/0142-9612(94)90114-7

    18. [18]

      Gao, X.;Tao, W.;Lu, W.;Zhang, Q.;Zhang, Y.;Jiang, X.;Fu, S.Biomaterials 2006, 27 (18), 3482. doi:10.1016/j.biomaterials.2006.01.038  doi: 10.1016/j.biomaterials.2006.01.038

    19. [19]

      Khlebtsov, B. N.; Khanadeev, V. A.; Khlebtsov, N.G.Opt. Spectrosc.2008, 105 (5), 732.doi:10.1134/S0030400X08110143  doi: 10.1134/S0030400X08110143

    20. [20]

      Zhou, K. G.; Mao, N. N.; Wang, H. X.; Peng, Y.;Zhang, H.L.Angew. Chem. Int. Edit. 2011, 50 (46), 11031.doi:10.1002/ange.201405325  doi: 10.1002/ange.201405325

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    6. [6]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    7. [7]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    8. [8]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    9. [9]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    10. [10]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    11. [11]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    12. [12]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    13. [13]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    14. [14]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    15. [15]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    16. [16]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    17. [17]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    18. [18]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    20. [20]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

Metrics
  • PDF Downloads(9)
  • Abstract views(732)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return