Citation: ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Physico-Chimica Sinica, ;2016, 32(4): 975-982. doi: 10.3866/PKU.WHXB201601281 shu

Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials

  • Corresponding author: WANG Geng-Chao, 
  • Received Date: 2 December 2015
    Available Online: 28 January 2016

    Fund Project: 国家自然科学基金项目(51173042) (51173042)上海市科委国际合作项目(15520720500)资助 (15520720500)

  • Well-dispersed graphene nanosheets (GNS) were prepared by the 60Co γ-ray irradiation reduction technique. On this basis, the hierarchical graphene nanosheet-supported poly(1,5-diaminoanthraquinone) (GNS@PDAA) nanocomposites were synthesized by the chemically oxidative polymerization method using camphor sulfonic acid as both the dopant and soft template. The influence of the DAA/GNS mass ratios on the morphology, chemical structure, and supercapacitance performance for GNS@PDAA nanocomposites was investigated. The structure, morphology, and electrochemical properties of the composites were characterized by Fourier infrared spectroscopy (FTIR), Raman spectroscopy (Raman), atomic force microscope (AFM), energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), and electrochemical measurements. The results show that for the GNS@PDAA nanocomposite with DAA/GNS mass ratio of 6/1, the PDAA nanoparticles (20-40 nm diameter) are evenly deposited on the surface of GNS, which intercalate a large number of mesopores with 10-30 nmthrough strong π-π stacking and network confinement. As a result, the GNS@PDAA exhibits the highest specific capacitance (398.7 F·g-1 at 0.5 A·g-1), excellent rate capability (71% capacitance retention at 50 A·g-1), and superior cycling stability (only 8.3% capacitance loss after 20000 cycles). Furthermore, based on the GNS@PDAA nanocomposites as both negative and positive electrodes, the as-assembled supercapacitors showed an excellent series/parallel connection effect in aqueous system.
  • 加载中
    1. [1]

      (1) Yang, X.W.; Cheng, C.;Wang, Y. F.; Qiu, L.; Li, D. Science 2013, 341 (6145), 534. doi: 10.1126/science.1239089

    2. [2]

      (2) Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P. F.; Mayes, R. T.; Dai, S.; Adv. Mater. 2011, 23 (42), 4828. doi: 10.1002/adma.201100984

    3. [3]

      (3) Jiang, H.; Lee, P. S.; Li, C. Z. Energy Environ. Sci. 2013, 6 (1), 41. doi: 10.1039/C2EE23284G

    4. [4]

      (4) Zhang, F.; Yuan, C. Z.; Zhu, J. J.;Wang, J.; Zhang, X. G.; Lou, X.W. Adv. Funct. Mater. 2013, 23 (31), 3909. doi: 10.1002/adfm.v23.31

    5. [5]

      (5) Wang, L. L.; Xing, R. G.; Zhang, B.W.; Hou, Y. Acta Phys. -Chim. Sin. 2014, 30 (9), 1659. [汪丽丽, 邢瑞光, 张邦文, 侯渊. 物理化学学报, 2014, 30 (9), 1659.] doi: 10.3866/PKU.WHXB201406162

    6. [6]

      (6) Tang, Q. Q.;Wang, W. Q.;Wang, G. C. J. Mater. Chem. A 2015, 3 (12), 6662. doi: 10.1039/C5TA00328H

    7. [7]

      (7) Li, X. G.; Li, H.; Huang, M. R. Chem. Eur. J. 2007, 13 (31), 8884. doi: 10.1002/chem.200700541

    8. [8]

      (8) Suematsu, S.; Naoi, K. J. Power Sources 2001, 97 (SI), 816. doi: 10.1016/S0378-7753(01)00735-2

    9. [9]

      (9) Hashmi, S. A.; Suematsu, S.; Naoi, K. J. Power Sources 2004, 137 (1), 145. doi: 10.1016/j.jpowsour.2004.05.007

    10. [10]

      (10) Gao, M. M.; Yang, F. L.;Wang, X. H.; Zhang, G. Q.; Liu, L. F. J. Phys. Chem. C 2007, 111 (46), 17268. doi: 10.1021/jp074415j

    11. [11]

      (11) Naoi, K.; Suematsu, S.; Hanada, M.; Takenouchi, H. J. Electrochem. Soc. 2002, 149 (4), A472. doi: 10.1149/1.1456920

    12. [12]

      (12) Tang, Z. Y.; Xu, G. X. Acta Phys. -Chim. Sin. 2003, 19 (4), 307. [唐致远, 徐国祥. 物理化学学报, 2003, 19 (4), 307.] doi: 10.3866/PKU.WHXB20030405

    13. [13]

      (13) El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Science 2012, 335 (6074), 1326. doi: 10.1126/science.1216744

    14. [14]

      (14) Yang, X.W.; Qiu, L.; Cheng, C.;Wu, Y. Z.; Ma, Z. F.; Li, D. Angew. Chem. Int. Edit. 2011, 50 (32), 7325. doi: 10.1002/anie.v50.32

    15. [15]

      (15) Wu, Q.; Xu, Y. X.; Yao, Z. Y.; Liu, A. R.; Shi, G. Q. ACS Nano 2010, 4 (4), 1963. doi: 10.1021/nn1000035

    16. [16]

      (16) Meng, Y. N.;Wang, K.; Zhang, Y. J.;Wei, Z. X. Adv. Mater. 2013, 25 (48), 6985. doi: 10.1002/adma.v25.48

    17. [17]

      (17) Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H.; Baumann, T. F. J. Am. Chem. Soc. 2010, 132 (40), 14067. doi: 10.1021/ja1072299

    18. [18]

      (18) Wu, X. L.;Wen, T.; Guo, H. L.; Yang, S. B.;Wang, X. K.; Xu, A.W. ACS Nano 2013, 7 (4), 3589. doi: 10.1021/nn400566d

    19. [19]

      (19) Chien, H. C.; Cheng, W. Y.;Wang, Y. H.; Lu, S. Y. Adv. Funct. Mater. 2012, 22 (23), 5038. doi: 10.1002/adfm.v22.23

    20. [20]

      (20) Cao, J. Y.;Wang, Y. M.; Chen, J. C.; Li, X. H.;Walsh, F. C.; Ouyang, J. H.; Jia, D. C.; Zhou, Y. J. Mater. Chem. A 2015, 3 (27), 14445. doi: 10.1039/c5ta02920a

    21. [21]

      (21) Zhou, H. H.; Han, G. Y.; Xiao, Y. M.; Chang, Y. Z.; Zhai, H. J. J. Power Sources 2014, 263, 259. doi: 10.1016/j.jpowsour.2014.04.039

    22. [22]

      (22) Liu, Y.; Ma, Y.; Guang, S. Y.; Ke, F. Y.; Xu, H. Y. Carbon 2015, 83, 79. doi: 10.1016/j.carbon.2014.11.026

    23. [23]

      (23) Lu, X. J.; Dou, H.; Yang, S. D.; Hao, L.; Zhang, F.; Zhang, X. G. Acta Phys. -Chim. Sin. 2011, 27 (10), 2333. [卢向军, 窦辉, 杨苏东, 郝亮, 张方, 张校刚. 物理化学学报, 2011, 27 (10), 2333.] doi: 10.3866/PKU.WHXB20111022

    24. [24]

      (24) Liu, H. Y.; Zhang, G. Q.; Zhou, Y. F.; Gao, M. M.; Yang, F. L. J. Mater. Chem. A 2013, 1 (44), 13902. doi: 10.1039/c3ta13600k

    25. [25]

      (25) Sun, M.;Wang, G. C.; Yang, C. Y.; Jiang, H.; Li, C. Z. J. Mater. Chem. A 2015, 3 (7), 3880. doi: 10.1039/C4TA06728B

    26. [26]

      (26) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80 (6), 1339. doi: 10.1021/ja01539a017

    27. [27]

      (27) Sun, M.;Wang, G. C.; Li, X.W.; Li, C. Z. J. Power Sources 2014, 245, 436. doi: 10.1016/j.jpowsour.2013.06.145

  • 加载中
    1. [1]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    3. [3]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    4. [4]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    5. [5]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    6. [6]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Ao XIABotao YUJun CHENGuoqiang TAN . Preparation and electrochemical property of Ce-doped MnO2. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2514-2526. doi: 10.11862/CJIC.20250163

    9. [9]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Hailang JIAYujie LUPengcheng JI . Preparation and properties of nitrogen and phosphorus co-doped graphene carbon aerogel supported ruthenium electrocatalyst for hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2327-2336. doi: 10.11862/CJIC.20250021

    16. [16]

      Yuanchun Pan Xinyun Lin Leyi Yang Wenya Hu Dekui Song Nan Liu . Artificial Intelligence Science Practice: Preparation of Electronic Skin by Chemical Vapor Deposition of Graphene. University Chemistry, 2025, 40(11): 272-280. doi: 10.12461/PKU.DXHX202412052

    17. [17]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    18. [18]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    19. [19]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(0)
  • Abstract views(669)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return