Citation: CHANG Xiao-Xia, GONG Jin-Long. On the Importance of Surface Reactions on Semiconductor Photocatalysts for Solar Water Splitting[J]. Acta Physico-Chimica Sinica, ;2016, 32(1): 2-13. doi: 10.3866/PKU.WHXB201510192 shu

On the Importance of Surface Reactions on Semiconductor Photocatalysts for Solar Water Splitting

  • Corresponding author: GONG Jin-Long, 
  • Received Date: 1 September 2015
    Available Online: 19 October 2015

    Fund Project: 国家自然科学基金(U1463205,21222604,51302185,21525626)资助项目 (U1463205,21222604,51302185,21525626)

  • One of the most appealing ways to resolve the worldwide energy crisis and environmental pollution is by converting solar energy into storable chemical energy as hydrogen through solar water splitting. The redox reactions of photogenerated charge carriers occurring on the surface of photocatalysts during the process of solar water splitting are particularly complex. Owing to the high reaction overpotentials and sluggish desorption kinetics of gas products, surface reaction is the rate-determining step in the solar water splitting process. Therefore, a great deal of attention has been focused on this specific research area. The recent advances and prospects for future directions regarding the importance of surface reactions for solar water splitting are presented. The main strategies to enhance the surface water splitting reaction kinetics are summarized. The roles and classifications of surface cocatalysts, as well as the effects of passivating the surface states and coating surface protective layers, are discussed by integrating the principles of photocatalysis. Prospects for the future development of surface reaction research are also proposed.
  • 加载中
    1. [1]

      (1) Osterloh, F. E. Chem. Soc. Rev. 2013, 42, 2294. doi: 10.1039/C2CS35266D

    2. [2]

      (2) Das, D.; Veziroglu, T. N. Int. J. Hydrog. Energy 2001, 26, 13. doi: 10.1016/S0360-3199(00)00058-6

    3. [3]

      (3) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    4. [4]

      (4) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/B800489G

    5. [5]

      (5) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326

    6. [6]

      (6) Kubacka, A.; Fernández-García, M.; Colón, G. Chem. Rev. 2012, 112, 1555. doi: 10.1021/cr100454n

    7. [7]

      (7) Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2014, 43, 7787. doi: 10.1039/C3CS60425J

    8. [8]

      (8) Valdés, Á.; Brillet, J.; Grätzel, M.; Gudmundsdóttir, H.; Hansen, H. A.; Jónsson, H.; Klüpfel, P.; Kroes, G.; Le Formal, F.; Man, I. C.; Martins, R. S.; Nörskov, J. K.; Rossmeisl, J.; Sivula, K.; Vojvodic, A.; Zäch, M. Phys. Chem. Chem. Phys. 2012, 14, 49. doi: 10.1039/C1CP23212F

    9. [9]

      (9) Hope, G. A.; Bard, A. J. J. Phys. Chem. 1983, 87, 1979. doi: 10.1021/j100234a029

    10. [10]

      (10) Wu, N. L.; Lee, M. S. Int. J. Hydrog. Energy 2004, 29, 1601. doi: 10.1016/j.ijhydene.2004.02.013

    11. [11]

      (11) Tran, P. D.; Xi, L.; Batabyal, S. K.; Wong, L. H.; Barber, J.; Loo, J. S. C. Phys. Chem. Chem. Phys. 2012, 14, 11596. doi: 10.1039/c2cp41450c

    12. [12]

      (12) Lin, K. Y.; Ma, B. J.; Su, W. G.; Liu, W. Y. Science & Technology Review 2013, 31, 103. [林克英, 马保军, 苏暐光, 刘万毅. 科技导报, 2013, 31, 103.]

    13. [13]

      (13) Yamaguti, K.; Sato, S. J. Chem. Soc. Faraday Trans. 1 1985, 81, 1237. doi: 10.1039/f19858101237

    14. [14]

      (14) Abe, R.; Sayama, K.; Arakawa, H. Chem. Phys. Lett. 2003, 371, 360. doi: 10.1016/S0009-2614(03)00252-5

    15. [15]

      (15) Maeda, K.; Teramura, K.; Lu, D.; Saito, N.; Inoue, Y.; Domen, K. Angew. Chem. 2006, 118, 7970.

    16. [16]

      (16) Li, Y. H.; Xing, J.; Chen, Z. J.; Li, Z.; Tian, F.; Zheng, L. R.; Wang, H. F.; Hu, P.; Zhao, H. J.; Yang, H. G. Nat. Commun. 2013, 4, 2500.

    17. [17]

      (17) Zong, X.; Han, J.; Ma, G.; Yan, H.; Wu, G.; Li, C. J. Phys. Chem. C 2011, 115, 12202.

    18. [18]

      (18) Sun, D. S.; Fu, B. Y.; Yang, W. L.; Wang, H. M.; Tian, M. K. Applied Chemical Industry 2015, 44, 720. [孙懂山, 付伯艳, 杨万亮, 王会敏, 田蒙奎. 应用化工, 2015, 44, 720.]

    19. [19]

      (19) Xiang, Q.; Yu, J.; Jaroniec, M. J. Am. Chem. Soc. 2012, 134, 6575. doi: 10.1021/ja302846n

    20. [20]

      (20) Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Angew. Chem. Int. Edit. 2011, 50, 7238. doi: 10.1002/anie.v50.32

    21. [21]

      (21) Sato, J.; Saito, N.; Yamada, Y.; Maeda, K.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K.; Inoue, Y. J. Am. Chem. Soc. 2005, 127, 4150. doi: 10.1021/ja042973v

    22. [22]

      (22) Kanan, M. W.; Nocera, D. G. Science 2008, 321, 1072. doi: 10.1126/science.1162018

    23. [23]

      (23) Zhong, D. K.; Choi, S.; Gamelin, D. R. J. Am. Chem. Soc. 2011, 133, 18370. doi: 10.1021/ja207348x

    24. [24]

      (24) Liao, M.; Feng, J.; Luo, W.; Wang, Z.; Zhang, J.; Li, Z.; Yu, T.; Zou, Z. Adv. Funct. Mater. 2012, 22, 3066. doi: 10.1002/adfm.v22.14

    25. [25]

      (25) Kim, T. W.; Choi, K. S. Science 2014, 343, 990. doi: 10.1126/science.1246913

    26. [26]

      (26) Maeda, K.; Lu, D.; Domen, K. Chemistry 2013, 19, 4986. doi: 10.1002/chem.201300158

    27. [27]

      (27) Lee, R.; Tran, P. D.; Pramana, S. S.; Chiam, S. Y.; Ren, Y.; Meng, S.; Wong, L. H.; Barber, J. Catal. Sci. Technol. 2013, 3, 1694. doi: 10.1039/c3cy00054k

    28. [28]

      (28) Wang, D.; Hisatomi, T.; Takata, T.; Pan, C.; Katayama, M.; Kubota, J.; Domen, K. Angew. Chem. Int. Edit. 2013, 52, 11252. doi: 10.1002/anie.v52.43

    29. [29]

      (29) Li, R.; Zhang, F.; Wang, D.; Yang, J.; Li, M.; Zhu, J.; Zhou, X.; Han, H.; Li, C. Nat. Commun. 2013, 4, 1432. doi: 10.1038/ncomms2401

    30. [30]

      (30) Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. J. Am. Chem. Soc. 2012, 134, 4294. doi: 10.1021/ja210755h

    31. [31]

      (31) Formal, F. L.; Tétreault, N.; Cornuz, M.; Moehl, T.; Grätzel, M.; Sivula, K. Chem. Sci. 2011, 2, 737. doi: 10.1039/C0SC00578A

    32. [32]

      (32) Hwang, Y. J.; Hahn, C.; Liu, B.; Yang, P. ACS Nano 2012, 6, 5060. doi: 10.1021/nn300679d

    33. [33]

      (33) Zandi, O.; Hamann, T. W. J. Phys. Chem. Lett. 2014, 5, 1522. doi: 10.1021/jz500535a

    34. [34]

      (34) Lee, M. H.; Takei, K.; Zhang, J.; Kapadia, R.; Zheng, M.; Chen, Y. Z.; Nah, J.; Matthews, T. S.; Chueh, Y. L.; Ager, J. W.; Javey, A. Angew. Chem. Int. Edit. 2012, 51, 10760. doi: 10.1002/anie.v51.43

    35. [35]

      (35) Wang, T.; Gong, J. Angew. Chem. Int. Edit. 2015, 54, 2. doi: 10.1002/anie.201410932

    36. [36]

      (36) Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Science 2014, 344, 1005. doi: 10.1126/science.1251428

    37. [37]

      (37) Li, C.; Wang, T.; Luo, Z.; Zhang, D.; Gong, J. Chem. Commun. 2015, 51, 7290. doi: 10.1039/C5CC01015B

    38. [38]

      (38) Bard, A. J.; Fox, M. A. Accounts Chem. Res. 1995, 28, 141. doi: 10.1021/ar00051a007

    39. [39]

      (39) Trotochaud, L.; Mills, T. J.; Boettcher, S. W. J. Phys. Chem. Lett. 2013, 4, 931. doi: 10.1021/jz4002604

    40. [40]

      (40) Morales-Guio, C. G.; Mayer, M. T.; Yella, A.; Tilley, S. D.; Grätzel, M.; Hu, X. J. Am. Chem. Soc. 2015, 137, 9927. doi: 10.1021/jacs.5b05544

    41. [41]

      (41) Zhong, M.; Hisatomi, T.; Kuang, Y.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M.; Shibata, N.; Niishiro, R.; Katayama, C.; Shibano, H.; Katayama, M.; Kudo, A.; Yamada, T.; Domen, K. J. Am. Chem. Soc. 2015, 137, 5053. doi: 10.1021/jacs.5b00256

    42. [42]

      (42) Chang, X.; Wang, T.; Zhang, P.; Zhang, J.; Li, A.; Gong, J. J. Am. Chem. Soc. 2015, 137, 8356. doi: 10.1021/jacs.5b04186

    43. [43]

      (43) Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. Science 2015, 347, 970. doi: 10.1126/science.aaa3145

    44. [44]

      (44) Barroso, M.; Pendlebury, S. R.; Cowan, A. J.; Durrant, J. R. Chem. Sci. 2013, 4, 2724. doi: 10.1039/c3sc50496d

    45. [45]

      (45) Werner, D.; Furube, A.; Okamoto, T.; Hashimoto, S. J. Phys. Chem. C 2011, 115, 8503. doi: 10.1021/jp112262u

  • 加载中
    1. [1]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    2. [2]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    3. [3]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    4. [4]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    5. [5]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    6. [6]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    7. [7]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    10. [10]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    11. [11]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    12. [12]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

Metrics
  • PDF Downloads(3)
  • Abstract views(971)
  • HTML views(192)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return