Citation: HAO Yan-Zhong, GUO Zhi-Min, SUN Bao, PEI Juan, WANG Shang-Xin, LI Ying-Pin. Photoelectrochemical Properties of Hierarchical ZnO Nanosheets Micro-Nanostructure Modified with Sb2S3 Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2015, 31(11): 2109-2116. doi: 10.3866/PKU.WHXB201509151 shu

Photoelectrochemical Properties of Hierarchical ZnO Nanosheets Micro-Nanostructure Modified with Sb2S3 Nanoparticles

  • Corresponding author: HAO Yan-Zhong, 
  • Received Date: 8 April 2015
    Available Online: 15 September 2015

    Fund Project: 国家自然科学基金(21173065) (21173065)河北省自然科学基金(B2014208062, B2014208066, B2010000856)资助项目 (B2014208062, B2014208066, B2010000856)

  • We fabricated highly ordered ZnO nanosheet arrays on ITO substrates by adding KCl and ethylenediamine(EDA) through potentiostatic deposition, then produced a hierarchical structure of ZnO nanorods on the nanosheets by using secondary electrodeposition. Shell-core Sb2S3/ZnO nanostructures were prepared from ZnO nanosheets and ZnO nanorods on nanosheets by chemical bath deposition. The nanostructures were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and their photoelectrochemical properties were investigated using ultraviolet-visible spectroscopy (UV-Vis) and photocurrent measurements. The shell-core Sb2S3/ZnO based on the hierarchical micronanostructure had higher photocurrent than did the shell-core Sb2S3/ZnO nanosheets. A hybrid solar cell was fabricated with a P3HT/Sb2S3/ZnO film as the photoactive layer. The P3HT/Sb2S3/ZnO hierarchical electrode exhibited an energy conversion efficiency as high as 0.81%.
  • 加载中
    1. [1]

      (1) Ueno, N.; Yamamoto, A.; Uchida, Y.; Egashira, Y.; Nishiyama, N. Materials Letters 2012, 86, 65. doi: 10.1016/j.matlet. 2012.07.033

    2. [2]

      (2) Jiao, S. H.; Xu, D. S.; Xu, L. F.; Zhang, X. G. Acta Phys. -Chim. Sin. 2012, 28 (10), 2436. [焦淑红, 徐东升, 许荔芬, 张晓光. 物理化学学报, 2012, 28 (10), 2436.] doi: 10.3866/PKU. WHXB201209145

    3. [3]

      (3) Xu, L. F.; Chen, Q. W.; Xu, D. S. J. Phys. Chem. C 2007, 111, 11560. doi: 10.1021/jp071536a

    4. [4]

      (4) Shi, Y. T.; Zhu, C.; Wang, L.; Zhao, C. Y.; Li, W.; Fung, K. K.; Ma, T. L.; Hagfeldt, A.; Wang, N. Chem. Mater. 2013, 25, 1000. doi: 10.1021/cm400220q

    5. [5]

      (5) Hao, Y. Z.; Cui, Y. Journal of Functional Materials 2008, 1 (39), 83. [郝彦忠, 崔玥. 功能材料, 2008, 1 (39), 83.]

    6. [6]

      (6) Zheng, Y. Z.; Ding, H. Y.; Liu, Y.; Tao, X.; Cao, G. Z.; Chen, J. F. Electrochimica Acta 2014, 145, 116. doi: 10.1016/j. electacta.2014.08.077

    7. [7]

      (7) Zhang, H.; Wu, P.; Han, C. B.; Sheng, W.; Cui, Q.; Qiu, Z. L.; Liu, C. W.; Gao, F.; Wang, M. T. Chemical Journal of Chinese University 2013, 34 (10), 2401. [张慧, 吴璠, 韩昌报, 沈薇, 崔奇, 邱泽亮, 刘长文, 高锋, 王命泰. 高等学校化学学报, 2013, 34 (10), 2401.]

    8. [8]

      (8) Asogwa, P.; Ezugwu, U. S. S.; Ezema, F. I. Chalcogenide Letters 2009, 6 (7), 287.

    9. [9]

      (9) Aousgi, F. M.; Kanzari. Journal of Optoelectronics and Advanced Materials 2010, 12 (2), 227.

    10. [10]

      (10) Boix, P. P.; Lee, Y. H.; Fabregat-Santiago, F.; Im, S. H.; Mora-Seró , I.; Bisquert, J.; Seok, S. I. Nano Lett. 2012, 6 (1), 873.

    11. [11]

      (11) Im, S. H.; Kim, H. J.; Rhee, J. H.; Lim, C. S.; Seok, S. I. Energy & Environmental Science 2011, 4, 2799. doi: 10.1039/c0ee00741b

    12. [12]

      (12) Zhu, G. Q.; Huang, X. J.; Feng, B.; Ge, B.; Bian, X. B. Chinese Journal of Inorganic Chemistry 2010, 26 (11), 2041. [朱刚强, 黄锡金, 冯波, 葛宝, 边小兵. 无机化学学报, 2010, 26 (11), 2041.]

    13. [13]

      (13) Rajpure, K. Y.; Bhosale, C. H. Materials Chemistry and Physics 2000, 63 (3), 263. doi: 10.1016/S0254-0584(99)00233-3

    14. [14]

      (14) Jonas, W.; Florian, A.; Thomas, B.; Lukas, S. M. J. Phys. Chem. C 2011, 115, 15081. doi: 10.1021/jp203600z

    15. [15]

      (15) Juliano, C. C.; Craig, A.; Feng, X. J.; Zhang, X. Y.; Sridhar, K.; Maria, V. B. Z.; Bao, N. Z. Chem. Commun. 2012, 48, 2818. doi: 10.1039/c2cc17573h

    16. [16]

      (16) Chang, J. A.; Rhee, J. H.; Im, S. H.; Lee, Y. H.; Kim, H. J.; Seok, S. I.; Nazeeruddin, M. K.; Graetzel, M. Nano Lett. 2010, 10, 2609. doi: 10.1021/nl101322h

    17. [17]

      (17) Heo, J. H.; Im, S. H.; Kim, H. J.; Boix, P. P.; Lee, S. J.; Seok, S. I.; Mora-Seró , I.; Bisquert, J. J. Phys. Chem. C 2012, 116, 20717. doi: 10.1021/jp305150s

    18. [18]

      (18) Moon, S. J.; Itzhaik, Y.; Yum, J. H.; Shaik, M.; Zakeeruddin, G. H.; Graetzel, M. J. Phys. Chem. Lett. 2010, 1, 1524. doi: 10.1021/jz100308q

    19. [19]

      (19) Chang, J. A.; Im, S. H.; Lee, Y. H.; Kim, H. J.; Lim, C. S.; Lim, J. H.; Seok, S. I. Nano Lett. 2012, 12, 1863. doi: 10.1021/nl204224v

    20. [20]

      (20) Flannan, T. F.; O'Mahony.; Thierry, L.; Nestor, G.; Roberto, G.; Saif, A. H. Energy & Environmental Science 2012, 10, 1039.

    21. [21]

      (21) Itzhaik, Y.; Niitsoo, O.; Page, M.; Hodes, G. J. Phys. Chem. C 2009, 113, 4254. doi: 10.1021/jp900302b

    22. [22]

      (22) Messina, S.; Nair, M. T. S.; Nair, P. K. Thin Solid Films 2009, 517, 2503.

    23. [23]

      (23) Im, S. H.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Maiti, N.; Kim, H. J.; Nazeeruddin, M. K.; Graetzel, M.; Seok, S. I. Nano Lett. 2011, 11, 4789. doi: 10.1021/nl2026184

    24. [24]

      (24) Salunkhe, D. B.; Gargote, S. S.; Dubal, D. P.; Kim, W. B.; Sankapal, B. R. Chemical Physical Letters 2012, 554, 150. doi: 10.1016/j.cplett.2012.10.032

    25. [25]

      (25) Wei, Y. Fabrication of Nano-Composited-Material and Study of Photronic Property. M. S. Dissertation, Hebei University of Science and Technology, Shijiazhuang, 2009. [魏垚. 纳米复合材料的制备及其光电性能的研究[D]. 石家庄: 河北科技大学, 2009.]

    26. [26]

      (26) Hao, Y. Z.; Sun, B.; Luo, C.; Fan, L. X.; Pei, J.; Li, Y. P. Chemical Journal of Chinese University 2014, 35 (1), 127. [郝彦忠, 孙宝, 罗冲, 范龙雪, 裴娟, 李英品. 高等学校化学学报, 2014, 35 (1), 127.]

    27. [27]

      (27) Li, Y. B. Research on the Construction and Properties of Photoeletic ZnO/CuInS2 and ZnO/CuInS2/CuSCN Heterostructures. M. S. Dissertation, Tianjin Institute of Urban Construction, Tianjin, 2012. [李亚彬. ZnO/CuInS2及ZnO/CuInS2/CuSCN 异质结构的构筑及性能研究[D]. 天津: 天津城市建设学院, 2012.]

    28. [28]

      (28) Hao, Y. Z. Photoelectrochemical Studies on Charge Transport Properties of Nanostructured Semiconductor Electrode and Its Photosensitization with Sensitizers. Ph. D. Dissertation, Peking University, Beijing, 1999. [郝彦忠. 半导体纳米结构电极及敏化层电荷传输特性的光电化学研究[D]. 北京: 北京大学, 1999.]

    29. [29]

      (29) Hao, Y. Z.; Fan, L. X.; Sun, B.; Sun, S.; Pei, J. Acta Chim. Sin. 2014, 72, 114. [郝彦忠, 范龙雪, 孙宝, 孙硕, 裴娟. 化学学报, 2014, 72, 114.] doi: 10.6023/A13080901

  • 加载中
    1. [1]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    2. [2]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    3. [3]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    8. [8]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    12. [12]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    13. [13]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    14. [14]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    16. [16]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    19. [19]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(77)
  • Abstract views(2342)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return