Citation:
YU Chang-Lin, WEI Long-Fu, LI Jia-De, HE Hong-Bo, FANG Wen, ZHOU Wan-Qin. Preparation and Characterization of /Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance[J]. Acta Physico-Chimica Sinica,
;2015, 31(10): 1932-1938.
doi:
10.3866/PKU.WHXB201509064
-
Graphene oxide ( ) was fabricated from graphite powder by Hummers oxidation method and then, under ultrasonic irradiation, a series of /Ag3PO4 composite photocatalysts (4% (w, mass fraction) /Ag3PO4, 8% /Ag3PO4, 16% /Ag3PO4, 32% /Ag3PO4) were synthesized by a facile liquid deposition process. The products were characterized by N2-physical adsorption, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra, Fourier transform infrared (FT-IR) spectroscopg, and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The effect of content on the photocatalytic activity of Ag3PO4 was evaluated by photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results show that can be easily dispersed into Ag3PO4, producing a well-connected /Ag3PO4 composite. Coupling of largely enhanced the surface area of the catalyst and the adsorption of MO. At the optimal content (16%), the degradation rate of MO over /Ag3PO4 was 83% after 120 min of light irradiation, exhibiting 7.5 times higher activity than that of pure Ag3PO4. The increase in photocatalytic activity and stability can be mainly attributed to the coupling of , which increased the surface area and suppressed the recombination rate of electron-hole (e-/h+) pairs and generated greater numbers of active free radicals.
-
-
-
[1]
(1) Zhou, W. Q.; Yu, C. L.; Fan, Q. Z.; Wei, L. F.; Chen, J. C.; Yu, J. C. Chin. J. Catal. 2013, 34, 1250. [周晚琴, 余长林, 樊启哲, 魏龙福, 陈建钗, Yu, J. C. 催化学报, 2013,34, 1250.] doi: 10.1016/S1872-2067(12)60578-6
-
[2]
(2) Jin, R. R.; You, J. G.; Zhang, Q.; Liu, D.; Hu, S. Z.; Gui, J. Z. Acta Phys. -Chim. Sin. 2014, 30, 1706. [金瑞瑞, 游继光, 张倩, 刘丹, 胡绍争, 桂建舟. 物理化学学报,2014, 30, 1706.] doi: 10.3866/PKU.WHXB201406272
-
[3]
(3) Yu, C. L.; Cao, F. F.; Shu, Q.; Bao, Y. L.; Xie, Z. P.; Yu, J. C.; Yang, K. Acta Phys.-Chim. Sin. 2012, 28, 647. [余长林, 操芳芳, 舒庆, 包玉龙, 谢志鹏, Yu J. C, 杨凯. 物理化学学报, 2012, 28, 647.] doi: 10.3866/PKU.WHXB201201051
-
[4]
(4) Yu, C. L.; Yang, K.; Yu, J. C.; Peng, P.; Cao, F. F.; Li, X.; Zhou, X. C. Acta Phys. -Chim. Sin. 2011, 27, 505. [余长林, 杨凯, 余济美, 彭鹏, 操芳芳, 李鑫, 周晓春. 物理化学学报, 2011, 27, 505.] doi: 10.3866/PKU.WHXB20110230
-
[5]
(5) Yu, G. H.; Xu, L. L.; Wang, P.; Wang, X. F.; Yu, J. G. Appl. Catal. B 2014, 144, 75. doi: 10.1016/j.apcatb.2013.06.023
-
[6]
(6) Yi, Z. G.; Ye, J. H.; Kikugawan, N.; Kako, T.; Ouyang, S. X.; Stuart-Williams, H.; Yang, H.; Cao, J. Y.; Luo, W. J.; Li, Z. S.; Withers, R. L. Nat. Mater. 2010, 9, 559. doi: 10.1038/nmat2780
-
[7]
(7) Ge, M.; Tan, M. M.; Cui, G. H. Acta Phys. -Chim. Sin. 2014, 30, 2107. [葛明, 谭勉勉, 崔广华. 物理化学学报, 2014, 30, 2107.] doi: 10.3866/PKU.WHXB201409041
-
[8]
(8) Wang, X. F.; Li, S. F.; Yu, H. G.; Yu, J. G.; Liu, S. W. Chem. -Eur. J. 2011, 17, 7777. doi: 10.1002/chem.201101032
-
[9]
(9) Dai, G. P.; Yu, J. G.; Liu, G. J. Phys. Chem. C 2012, 116, 15519. doi: 10.1021/jp305669f
-
[10]
(10) Ouyang, S. X.; Ye, J. H. J. Am. Chem. Soc. 2011, 133, 7757. doi: 10.1021/ja110691t
-
[11]
(11) Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. J. Am. Chem. Soc. 2004, 126, 13406. doi: 10.1021/ja048296m
-
[12]
(12) Wang, D.; Kako, T.; Ye, J. J. Phys. Chem. C 2009, 113, 3785.
-
[13]
(13) Bi, Y. P.; Ouyang, S. X.; Cao, J. Y.; Ye, J. H. Phys. Chem. Chem. Phys. 2011, 13, 10071. doi: 10.1039/c1cp20488b
-
[14]
(14) Yu, C. L.; Zhou, W. Q.; Yu, J. C.; Liu, H.; Wei, L. F. Chin. J. Catal. 2014, 35, 1609. [余长林, 周晚琴, 余济美, 刘鸿, 魏龙福. 催化学报, 2014, 35, 1609.] doi:10.1016/S1872-2067(14)60170-4
-
[15]
(15) Yu, C. L.; Li, G.; Kumar, S.; Yang, K.; Jin, R. C. Adv. Mater. 2014, 26, 892. doi: 10.1002/adma.v26.6
-
[16]
(16) Liu, S. Q.; Wang, S.; Dai, G. P.; Lu, J.; Liu, K. Acta Phys. -Chim. Sin. 2014, 30, 2121. [刘素芹, 王松, 戴高鹏, 鲁俊, 刘科. 物理化学学报, 2014, 30, 2121.] doi: 10.3866/PKU.WHXB201409191
-
[17]
(17) Liu, J. B.; Yi, Y.; Shi, P. H.; Wang, Q.; Li, D. X.; Hussain, A.; Yang, M. Acta Phys. -Chim. Sin. 2014, 30, 1720. [李洁冰, 伊玉, 时鹏辉, 王倩, 李登新, Hussain A., 杨明. 物理化学学报, 2014, 30, 1720.] doi: 10.3866/PKU.WHXB201407021
-
[18]
(18) Zhang, Q. Q.; Li, R.; Zhang, M. M.; u, X. L. Acta Phys. -Chim. Sin. 2014, 30, 476. [张晴晴, 李容, 张萌萌, 苟兴龙. 物理化学学报, 2014, 30, 476.] doi: 10.3866/PKU.WHXB201401071
-
[19]
(19) Liu, J. X.; Wang, Y. F.; Wang, Y. W.; Fan, C. M. Acta Phys. -Chim. Sin. 2014, 30, 729. [刘建新, 王韵芳, 王雅文, 樊彩梅. 物理化学学报, 2014, 30, 729.] doi: 10.3866/PKU.WHXB201402243
-
[20]
(20) Geng, J. Y.; Zhu, X. S.; Du, Y. K. Chin. J. Inorg. Chem. 2012, 28, 357. [耿静漪, 朱新生, 杜玉扣. 无机化学学报, 2012, 28, 357.]
-
[21]
(21) Wang, C.; Cao, M. H.; Wang, P. F.; Ao, Y. H.; Hou, J.; Qian, J. Appl. Catal. A 2014, 473, 83. doi: 10.1016/j.apcata.2013.12.028
-
[22]
(22) Hu, J.; Li, H. S.; Wu, Q.; Zhao, Y.; Jiao, Q. Z. Chem. Eng. J. 2015, 263, 144. doi: 10.1016/j.cej.2014.11.007
-
[23]
(23) Gao, Y.; Hu, M.; Mi, B. X. J. Membr. Sci. 2014, 455, 349. doi: 10.1016/j.memsci.2014.01.011
-
[24]
(24) He, G. L.; Chen, M. J.; Liu, Y. Q.; Li, X.; Liu, Y. J.; Xu, Y. H. Appl. Surf. Sci. 2015, 351, 474. doi: 10.1016/j.apsusc.2015.05.159
-
[25]
(25) Chen, Y. L.; Zhang, C. E.; Deng, C.; Fei, P.; Zhong, M.; Su, B. T. Chin. Chem. Lett. 2013, 24, 518. doi: 10.1016/j.cclet.2013.03.034
-
[26]
(26) Liu, L.; Liu, J. C.; Sun, D. D. Catal. Sci. Technol. 2012, 2, 2525. doi: 10.1039/c2cy20483e
-
[27]
(27) Chen, G. D.; Sun, M.; Wei, Q.; Zhang, Y. F.; Zhu, B. C.; Du, B. J. Hazard. Mater. 2013, 244/245, 86.
-
[28]
(28) Long, M.; Cong, Y.; Li, X. K.; Cui, Z. W.; Dong, Z. J.; Yuan, G. M. Acta Phys. -Chim. Sin. 2013, 29, 1344. [龙梅, 丛野, 李轩科, 崔正威, 董志军, 袁观明. 物理化学学报, 2013, 29, 1344.] doi: 10.3866/PKU.WHXB201303263
-
[29]
(29) Zhao, H. M.; Su, F.; Fan, X. F.; Yu, H. T.; Wu, D.; Quan, X. Chin. J. Catal. 2012, 33, 777. [赵慧敏, 苏芳, 范新飞, 于洪涛, 吴丹, 全燮. 催化学报, 2012, 33, 777.] doi: 10.1016/S1872-2067(11)60374-4
-
[30]
(30) Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Nano. Lett. 2008, 8, 36. doi: 10.1021/nl071822y
-
[31]
(31) Yu, C. L.; Wei, L. F.; Zhou, W. Q.; Chen, J. C.; Fan, Q. Z.; Liu, H. Appl. Surf. Sci. 2014, 319, 312. doi: 10.1016/j.apsusc.2014.05.158
-
[1]
-
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[3]
Zhangyong LIU , Lihui XU , Yue YANG , Liming WANG , Hong PAN , Xinzhe HUANG , Xueqiang FU , Yingxiu ZHANG , Meiran DOU , Meng WANG , Yi TENG . Preparation and photocatalytic performance of CsxWO3/TiO2 based on full spectral response. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1445-1464. doi: 10.11862/CJIC.20240345
-
[4]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013
-
[5]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[6]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[7]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074
-
[8]
Tongyan Yu , Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070
-
[9]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[12]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[13]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[14]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[15]
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
-
[16]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
-
[17]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[18]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[19]
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
-
[20]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[1]
Metrics
- PDF Downloads(216)
- Abstract views(655)
- HTML views(37)