Citation: SHANG Ming-Feng, DUAN Pei-Quan, ZHAO Tian-Tian, TANG Wen-Chao, LIN Rui, HUANG Yu-Ying, WANG Jian-Qiang. In Situ XAFS Methods for Characterizing Catalyst Structure in Proton Exchange Membrane Fuel Cell[J]. Acta Physico-Chimica Sinica, ;2015, 31(8): 1609-1614. doi: 10.3866/PKU.WHXB201505252 shu

In Situ XAFS Methods for Characterizing Catalyst Structure in Proton Exchange Membrane Fuel Cell

  • Received Date: 12 February 2015
    Available Online: 25 May 2015

    Fund Project: 国家重点基础研究发展规划项目(973) (2013CB933104) (973) (2013CB933104)国家自然科学基金(91127001, 11079005)资助 (91127001, 11079005)

  • We established and developed an in situ X-ray absorption fine structure (XAFS) experimental testing device for characterizing hydrogen-oxygen proton exchange membrane fuel cells (PEMFC) on XAFS beamline BL14W1 at the Shanghai Synchrotron Radiation Facility (SSRF). XAFS data were collected under the operating state of the fuel cell with Pt/C and Pd/C as the cathode and anode catalysts, respectively, while the cell current-voltage (J-V) Curve and power density curves were monitored. Changes in the oxidation states of the Pt/C catalyst were observed during the reaction process at different potentials. Strong Pt-O bonds on the surfaces of the Pt were found to be induced at high potential; this may hinder the performance of Pt and reduce its oxygen reduction reaction (ORR) activity. The study also verified the reliability and feasibility of the herein established experimental apparatus and technique.

  • 加载中
    1. [1]

      (1) Fu, X. C.; Sheng, W. X.; Yao, T. Y. Physical Chemistry, Volume II; Higher Education Press: Beijing, 2006; pp 141-143. [傅献彩, 沈文霞, 姚天杨. 物理化学. 下册. 北京: 高等教育出版社, 2006: 141-143.]

    2. [2]

      (2) Ryan, O. H.; Whitney, C.; Fritz, B. P. Fuel Cell Fundamentals; translated by Wang, X. H.; Huang, H. Publishing House of Electronics Industry: Beijing, 2007; pp 6-7. [Ryan, O. H.; Whitney. C.; Fritz, B. P. 燃料电池基础. 王晓红, 黄宏, 译. 北京: 电子工业出版社, 2007: 6-7.]

    3. [3]

      (3) Roth, C.; Martz, N.; Buhrmester, T.; Scherer, J.; Fuess, H. J. Phys. Chem. C 2002, 4 (15), 3555.

    4. [4]

      (4) Stoupin, S.; Chung, E. H.; Chattopadhyay, S.; Segre, C. U.; Smotkin, E. S. J. Phys. Chem. B 2006, 110 (20), 9932. doi: 10.1021/jp057047x

    5. [5]

      (5) Scott, F. J.; Roth, C.; Ramaker, D. E. J. Phys. Chem. C 2007, 111 (30), 11403. doi: 10.1021/jp072698+

    6. [6]

      (6) Lin, R.; Cao, C. H.; Zhao, T. T.; Huang, Z.; Li, B. J. Power Sources 2013, 223, 190. doi: 10.1016/j.jpowsour.2012.09.073

    7. [7]

      (7) Cao, C. H.; Lin, R; Zhao, T. T.; Huang, Z.; Ma, J. X. Acta Phys. -Chim. Sin. 2013, 29, 1. [曹春晖, 林瑞, 赵天天, 黄真, 马建新. 物理化学学报, 2013, 29, 1.] doi: 10.3866/PKU.WHXB 201209272

    8. [8]

      (8) Shao, M. H.; Adzic, R. R. J. Phys. Chem. B 2005, 109, 16563. doi: 10.1021/jp053450s

    9. [9]

      (9) Smith, M. C.; Gilbert, J. A.; Mawdsley, J. R.; Seifert, S.; Myers, D. J. J. Am. Chem. Soc. 2008, 130 (26), 8112. doi: 10.1021/ja801138t

    10. [10]

      (10) Shao, M. H.; Liu, P.; Adzic, R. R. J. Am. Chem. Soc. 2006, 128, 7408. doi: 10.1021/ja061246s

    11. [11]

      (11) Teliska, M.; O'Grady, W. E.; Ramaker, D. E. J. Phys. Chem. B 2005, 109 (16), 8076. doi: 10.1021/jp0502003

    12. [12]

      (12) Maniguet, S.; Mathew, R. J.; Russell, A. E. J. Phys. Chem. B 2000, 104 (9), 1998. doi: 10.1021/jp992947x

    13. [13]

      (13) Zhang, H. Y.; Cao, C. H.; Zhao, J.; Lin, R.; Ma, J. X. Chin. J. Catal. 2012, 33, 222. [张海艳, 曹春晖, 赵健, 林瑞, 马建新. 催化学报, 2012, 33, 222.]

    14. [14]

      (14) Russell, A. E.; Maniguet, S.; Mathew, R. J.; Yao, J.; Roberts, M. A.; Thompsett, D. J. Power Sources 2001, 96 (1), 226. doi: 10.1016/S0378-7753(01)00573-0

    15. [15]

      (15) Viswanathan, R.; Hou, G.; Liu, R.; Bare, S. R.; Modica, F.; Mickelson, G.; Segre, C. U.; Leyarovska, N.; Smotkin, E. S. J. Phys. Chem. B 2002, 106 (13), 3458. doi: 10.1021/jp0139787

    16. [16]

      (16) Teliska, M.; Murthi, V. S.; Mukerjee, S.; Ramaker, D. E. J. Phys. Chem. C 2007, 111 (26), 9267. doi: 10.1021/jp071106k

    17. [17]

      (17) Thomas, M. A.; Badri, S.; Jamie, S. L.; Nagappan, R.; David, E. B.; David, E. R.; Sanjeev, M. J. Phys. Chem. C 2010, 114 (2), 1028. doi: 10.1021/jp908082j

    18. [18]

      (18) Fan, Q. B.; Pu, C.; Smotkin, E. S. J. Electrochem. Soc. 1996, 143 (10), 3053. doi: 10.1149/1.1837163

    19. [19]

      (19) Viswanathan, R.; Liu, R.; Smotkin, E. S. Rev. Sci. Instrum. 2002, 73 (5), 2124. doi: 10.1063/1.1472469

    20. [20]

      (20) Ian, K.; Dunesh, K.; Adam, Y.; Nicholas, D.; Smotkin, E. S. J. Am. Chem. Soc. 2010, 132, 17611. doi: 10.1021/ja1081487

    21. [21]

      (21) Rice, C.; Tong, Y.; Oldfield, E.; Wieckowski, A.; Hahn, F.; Gloaguen, F.; Leger, J. M.; Lamy, C. J. Phys. Chem. C 2000, 104, 5803. doi: 10.1021/jp0007179

    22. [22]

      (22) Sanicharane, S.; Bo, A.; Sompalli, B.; Gurau, B.; Smotkin, E. S. J. Electrochem. Soc. 2002, 149 (5), A554.

    23. [23]

      (23) Vijayaraghavan, G.; Gao, L.; Korzeniewski, C. Langmuir 2003, 19, 2333. doi: 10.1021/la0207466

    24. [24]

      (24) Tkach, I.; Panchenko, A.; Kaz, T.; gel, V.; Friedrich, K. A.; Roduner, E. Phys. Chem. Chem. Phys. 2004, 6 (23), 5419. doi: 10.1039/b411108g

    25. [25]

      (25) Lebedeva, N. P.; Rodes, A.; Feliu, J. M.; Koper, M. T. M.; Santeen, R. A. V. J. Phys. Chem. B 2002, 106, 9863. doi: 10.1021/jp0203806

    26. [26]

      (26) Kim, C. S.; Korzeniewski, C. Anal. Chem. 1997, 69 (13), 2349. doi: 10.1021/ac961306k

    27. [27]

      (27) Shin, J.; Korzeniewski, C. J. Phys. Chem. 1995, 99 (11), 3419. doi: 10.1021/j100011a003

    28. [28]

      (28) Milan, M. J.; Gianluigi, A. B.; Georgios, D. P.; Feihong, N.; Jelena, M. J. J. Phys. Chem. C 2014, 118, 8723. doi: 10.1021/jp412292w

    29. [29]

      (29) Zawodzinski, T. A.; Derouin, C.; Radzinski, S.; Sherman, R. J.; Smith, V. T.; Springer, T. E.; ttesfeld, S. J. Electrochem. Soc. 1993, 140 (4), 1041. doi: 10.1149/1.2056194

    30. [30]

      (30) Giorgia, G.; Agnieszka, W.; Marco, M.; Luca, O.; Emiliano, P.; Sonia, D.; Arianna, M.; Roberto, M.; Andrea, D. C. J. Phys. Chem. C 2012, 116, 12791. doi: 10.1021/jp2099569

    31. [31]

      (31) Bridgid, N. W.; Bin, F.; Shan, S. Y.; Valeri, P.; Zhu, P. Y.; Rameshwori, L.; Chen, Y. S.; Jin, L.; Jun, Y.; Yang, L. F.; Shao, M. H.; Zhong, C. J. Chem. Mater. 2012, 24, 4283. doi: 10.1021/cm301613j

    32. [32]

      (32) Shin-ichi, N.; Takashi, A.; Masakuni, Y.; Takuya, O.; Hiroyuki, O.; Takayuki, I.; Hajime, K.; Tomoya, U.; Mizuki, T.; Yasuhiro, I. J. Phys. Chem. C 2013, 117, 13094. doi: 10.1021/jp402438e


  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    6. [6]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    9. [9]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    12. [12]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    13. [13]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    14. [14]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    15. [15]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    16. [16]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

Metrics
  • PDF Downloads(277)
  • Abstract views(689)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return