Citation: XU Ke, CHENG Yi, SUN Bo, PEI Yan, YAN Shi-Run, QIAO Ming-Hua, ZHANG Xiao-Xin, ZONG Bao-Ning. Fischer-Tropsch Synthesis over Skeletal Co@HZSM-5 Core-Shell Catalysts[J]. Acta Physico-Chimica Sinica, ;2015, 31(6): 1137-1144. doi: 10.3866/PKU.WHXB201503311 shu

Fischer-Tropsch Synthesis over Skeletal Co@HZSM-5 Core-Shell Catalysts

  • Received Date: 2 February 2015
    Available Online: 31 March 2015

    Fund Project: 国家重点基础研究发展规划项目(973) (2012CB224804) (973) (2012CB224804) 国家自然科学基金(21373055) (21373055)上海市科委科技基金(08DZ2270500)资助 (08DZ2270500)

  • We used skeletal Co as the core to prepare a skeletal Co@HZSM-5 core-shell catalyst by growing an HZSM-5 membrane on skeletal Co via hydrothermal synthesis. The physicochemical properties of the catalyst were determined using elemental analysis, N2 physisorption, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and NH3 desorption. In gas-phase Fischer-Tropsch synthesis (FTS), the skeletal Co@HZSM-5 core-shell catalyst was more efficient than a physically mixed skeletal Co-HZSM-5 catalyst in cracking long-chain hydrocarbons, giving higher selectivity for C5-C11 gasoline products. The thickness of the zeolite shell on the skeletal Co@HZSM-5 core-shell catalyst was easily tuned by adjusting the hydrothermal time. At a suitable zeolite shell thickness, the long-chain hydrocarbons were cracked completely, with high FTS activity, leading to high selectivity for the gasoline fraction. Increasing the reaction temperature resulted in higher FTS and cracking activities, but the product distribution shifted to short-chain hydrocarbons. For the optimum skeletal Co@HZSM-5 core-shell catalyst, which was subjected to hydrothermal treatment for 4 d, selectivity for the gasoline fraction reached 79% at 250 ℃, which shows an excellent synergistic effect between the FTS active sites and the acidic sites on this catalyst.

  • 加载中
    1. [1]

      (1) Schulz, H. Appl. Catal. A 1999, 186, 3. doi: 10.1016/S0926-860X(99)00160-X

    2. [2]

      (2) Khodakov, A. Y.; Chu, W.; Fongarland, P. Chem. Rev. 2007, 107, 1692. doi: 10.1021/cr050972v

    3. [3]

      (3) Kang, J. C.; Cheng, K.; Zhang, L.; Zhang, Q. H.; Ding, J. S.; Hua, W. Q.; Lou, Y. C.; Zhai, Q. G.; Wang, Y. Angew. Chem. Int. Edit. 2011, 50, 5200. doi: 10.1002/anie.v50.22

    4. [4]

      (4) Friedel, R. A.; Anderson, R. B. J. Am. Chem. Soc. 1950, 72, 2307. doi: 10.1021/ja01161a536

    5. [5]

      (5) van der Laan, G. P.; Beenackers, A. A. C. M. Catal. Rev. Sci. Eng. 1999, 41, 255. doi: 10.1081/CR-100101170

    6. [6]

      (6) de Smit, E.; Weckhuysen, B. M. Chem. Soc. Rev. 2008, 37, 2758. doi: 10.1039/b805427d

    7. [7]

      (7) Udaya, V.; Rao, S.; rmley, R. J. Catal. Today 1990, 6, 207. doi: 10.1016/0920-5861(90)85003-7

    8. [8]

      (8) Yao, M.; Hu, S.; Wang, J.; Dou, T.; Wu, Y. P. Acta Phys. -Chim. Sin. 2012, 28, 2122. [姚敏, 胡思, 王俭, 窦涛, 伍永平. 物理化学学报, 2012, 28, 2122.] doi: 10.3866/PKU.WHXB201206211

    9. [9]

      (9) Zhang, S. L.; Zhang, L. L.; Wang, W. G.; Min, Y. Y.; Ma, T.; Song, Y.; ng, Y. J.; Dou, T. Acta Phys. -Chim. Sin. 2014, 30, 535. [张少龙, 张兰兰, 王务刚, 闵媛媛, 马通, 宋宇, 巩雁军, 窦涛. 物理化学学报, 2014, 30, 535.] doi: 10.3866/PKU.WHXB201401032

    10. [10]

      (10) Zhang, Q. H.; Kang, J. C.; Wang, Y. ChemCatChem 2010, 2, 1030. doi: 10.1002/cctc.201000071

    11. [11]

      (11) Sun, B.; Qiao, M. H.; Fan, K. N.; Ulrich, J.; Tao, F. ChemCatChem 2011, 3, 542. doi: 10.1002/cctc.v3.3

    12. [12]

      (12) Sun, B.; Yu, G. B.; Lin, J.; Xu, K.; Pei, Y.; Yan, S. R.; Qiao, M. H.; Fan, K. N.; Zhang, X. X.; Zong, B. N. Catal. Sci. Technol. 2012, 2, 1625. doi: 10.1039/c2cy20155k

    13. [13]

      (13) Martínez, A.; López, C. Appl. Catal. A 2005, 294, 251. doi: 10.1016/j.apcata.2005.07.038

    14. [14]

      (14) Pour, A. N.; Zamani, Y.; Tavasoli, A.; Shahri, S. M. K.; Taheri, S. A. Fuel 2008, 87, 2004. doi: 10.1016/j.fuel.2007.10.014

    15. [15]

      (15) Wang, P.; Kang, J. C.; Zhang, Q. H.; Wang, Y. Catal. Lett. 2007, 114, 178. doi: 10.1007/s10562-007-9062-4

    16. [16]

      (16) Ngamcharussrivichai, C.; Imyim, A.; Li, X. H.; Fujimoto, K. Ind. Eng. Chem. Res. 2007, 46, 6883. doi: 10.1021/ie070099j

    17. [17]

      (17) Nijs, H. H.; Jacobs, P. A. J. Catal. 1980, 66, 401. doi: 10.1016/0021-9517(80)90043-3

    18. [18]

      (18) Yu, G. B.; Sun, B.; Pei, Y.; Xie, S. H.; Yan, S. R.; Qiao, M. H.; Fan, K. N.; Zhang, X. X.; Zong, B. N. J. Am. Chem. Soc. 2010, 132, 935. doi: 10.1021/ja906370b

    19. [19]

      (19) Cheng, K.; Zhang, L.; Kang, J. C.; Peng, X. P.; Zhang, Q. H.; Wang, Y. Chem. Eur. J. 2015, 21, 1928. doi: 10.1002/chem.v21.5

    20. [20]

      (20) Zhang, Q. H.; Cheng, K.; Kang, J. C.; Deng, W. P.; Wang, Y. ChemSusChem 2014, 7, 1251. doi: 10.1002/cssc.201300797

    21. [21]

      (21) Sartipi, S.; Parashar, K.; Makkee, M.; Gascon, J.; Kapteijn, F. Catal. Sci. Technol. 2013, 3, 572. doi: 10.1039/C2CY20744C

    22. [22]

      (22) He, J.; Liu, Z.; Yoneyama, Y.; Nishiyama, N.; Tsubaki, N. Chem. -Eur. J. 2006, 12, 8296.

    23. [23]

      (23) Bao, J.; He, J. J.; Zhang, Y.; Yoneyama, Y.; Tsubaki, N. Angew. Chem. Int. Edit. 2008, 47, 353.

    24. [24]

      (24) Li, X. G.; He, J. J.; Meng, M.; Yoneyama, Y.; Tsubaki, N. J. Catal. 2009, 265, 26. doi: 10.1016/j.jcat.2009.04.009

    25. [25]

      (25) Zhou, J. L.; Lü, Y. J.; Zhang, Z. X.; Li, G. H.; Dong, L. Y.; Wang, H. R.; Zhou, P. Z.; Lee, L. K. Skeletal Iron Catalyst and Its Preparation for Fischer-Tropsch Synthesis Processes. US Pat. 6265451, 2001.

    26. [26]

      (26) Janey, J. M.; Orella, C. J.; Njolito, E.; Baxter, J. M.; Rosen, J. D.; Palucki, M.; Sidler, R. R.; Li, W.; Kowal, J. J.; Davies, I.W. J. Org. Chem. 2008, 73, 3212. doi: 10.1021/jo8000996

    27. [27]

      (27) Madon, R. J.; Iglesia, E. J. Catal. 1994, 149, 428. doi: 10.1006/jcat.1994.1309

    28. [28]

      (28) Yang, G.; He, J.; Yoneyama, Y.; Tan, Y.; Han, Y.; Tsubaki, N. Appl. Catal. A 2007, 329, 99. doi: 10.1016/j.apcata.2007.06.028


  • 加载中
    1. [1]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    7. [7]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    8. [8]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    12. [12]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    13. [13]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    14. [14]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    15. [15]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    16. [16]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    17. [17]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    18. [18]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    19. [19]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    20. [20]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

Metrics
  • PDF Downloads(340)
  • Abstract views(1073)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return